新着情報
新着情報
トポロジーセミナー(2017/04/27)
日時:2017年4月27日(木)14:00〜15:00
場所:筑波大学自然系学系D棟D814
講演者:伊敷喜斗 氏 (筑波大学 数理物質系)
講演題目:Quasi-symmetric invariant properties of Cantor metric spaces
アブストラクト:For metric spaces, the doubling property, the uniform disconnectedness, and the uniform perfectness are known as quasi-symmetric invariant properties.
We say that a Cantor metric space is standard if it satisfies all the three properties; otherwise, it is exotic.
For instance, the middle-third Cantor set is standard.
In this talk, we discuss our constructions of exotic Cantor metric spaces for all the possible cases of satisfying each of the three properties or not.
Our constructions enable us to classify Cantor metric spaces into eight types with concrete examples.
The David-Semmes uniformization theorem tells us that standard Cantor metric spaces are quasi-symmetric equivalent.
In this talk, we conclude that there exist at least two exotic Cantor metric spaces of the same type that are not quasi-symmetric equivalent to each other.
Moreover, for each of all the non-uniformly disconnected types, there exist at least aleph one many quasi-symmetric equivalent classes of Cantor metric spaces of such a given type.
As a byproduct of our study, we state that there exists a Cantor metric space with prescribed Hausdorff dimension and Assoud dimension.
場所:筑波大学自然系学系D棟D814
講演者:伊敷喜斗 氏 (筑波大学 数理物質系)
講演題目:Quasi-symmetric invariant properties of Cantor metric spaces
アブストラクト:For metric spaces, the doubling property, the uniform disconnectedness, and the uniform perfectness are known as quasi-symmetric invariant properties.
We say that a Cantor metric space is standard if it satisfies all the three properties; otherwise, it is exotic.
For instance, the middle-third Cantor set is standard.
In this talk, we discuss our constructions of exotic Cantor metric spaces for all the possible cases of satisfying each of the three properties or not.
Our constructions enable us to classify Cantor metric spaces into eight types with concrete examples.
The David-Semmes uniformization theorem tells us that standard Cantor metric spaces are quasi-symmetric equivalent.
In this talk, we conclude that there exist at least two exotic Cantor metric spaces of the same type that are not quasi-symmetric equivalent to each other.
Moreover, for each of all the non-uniformly disconnected types, there exist at least aleph one many quasi-symmetric equivalent classes of Cantor metric spaces of such a given type.
As a byproduct of our study, we state that there exists a Cantor metric space with prescribed Hausdorff dimension and Assoud dimension.
解析セミナー Jean Vaillant氏
筑波大学解析セミナーを下記のように行いますのでご案内いたします.
皆様のご参加をお待ちしております.
------ 筑波大学解析セミナーのお知らせ ------
日 時: 3月15日(水) 16時 〜 17時
講 演 者: Jean Vaillant 氏(Paris VI)
題 目: Conditions of hyperbolicity for systems of linear partial differntial equations
-----------------------------------------------
【 場所 】 筑波大学 自然系学系D棟 D509 教室
なお,筑波大学解析セミナーホームページ
(http://www.math.tsukuba.ac.jp/~analysis/)に
講演に関する情報を掲載しております.
解析セミナー 廣惠一希 氏
下記の日程で解析セミナーを開催いたしますので、興味がございます方は是非ご参加下さい。
日時: 平成29年2月8日(水) 15時30分 — 17時
場所: 筑波大学 自然系学系 B棟 B718室
(同じ週に学類向け集中講義を行いますので通常の部屋から変更します)
講演者: 廣惠一希 氏(城西大学)
題目: 線形常微分方程式のアクセサリーパラメーターを巡って
概要:
Fuchs型常微分方程式の大域解析学においてEuler型の積分表示解は古典的に
大きな役割を果たしてきた.このEuler型の積分表示解を微分方程式が持つ
ための条件を決定づけるのがKatz-大久保の定理といえる.
すなわちRiemann球面上のFuchs型既約微分方程式がEuler変換によって一階
の方程式に変形できるための必要十分条件を微分方程式が「アクセサリーパ
ラメーターを持たない」という条件で決定したのが上記の定理である.
この定理によってEuler型の積分表示解をもつFuchs型微分方程式のクラスが
決定されたことになる.ではこの枠組みの外にある方程式,つまりアクセサ
リーパラメーターを持つ方程式やFuchs型ではない方程式の大域解析学はどの
ように扱えばよいのか?
この問題に対する一つのアプローチがKac-Moodyルート系の組み合わせ論や
箙の表現論や平面代数曲線の芽の特異点論等を通して近年急速に進展しつつある.
こうした研究の概要について講演者の結果も交えつつ最近の発展と今後の課題に
ついてお話ししたい.
世話人: 桑原 敏郎 (kuwabara-at-math.tsukuba.ac.jp)
日時: 平成29年2月8日(水) 15時30分 — 17時
場所: 筑波大学 自然系学系 B棟 B718室
(同じ週に学類向け集中講義を行いますので通常の部屋から変更します)
講演者: 廣惠一希 氏(城西大学)
題目: 線形常微分方程式のアクセサリーパラメーターを巡って
概要:
Fuchs型常微分方程式の大域解析学においてEuler型の積分表示解は古典的に
大きな役割を果たしてきた.このEuler型の積分表示解を微分方程式が持つ
ための条件を決定づけるのがKatz-大久保の定理といえる.
すなわちRiemann球面上のFuchs型既約微分方程式がEuler変換によって一階
の方程式に変形できるための必要十分条件を微分方程式が「アクセサリーパ
ラメーターを持たない」という条件で決定したのが上記の定理である.
この定理によってEuler型の積分表示解をもつFuchs型微分方程式のクラスが
決定されたことになる.ではこの枠組みの外にある方程式,つまりアクセサ
リーパラメーターを持つ方程式やFuchs型ではない方程式の大域解析学はどの
ように扱えばよいのか?
この問題に対する一つのアプローチがKac-Moodyルート系の組み合わせ論や
箙の表現論や平面代数曲線の芽の特異点論等を通して近年急速に進展しつつある.
こうした研究の概要について講演者の結果も交えつつ最近の発展と今後の課題に
ついてお話ししたい.
世話人: 桑原 敏郎 (kuwabara-at-math.tsukuba.ac.jp)
数学域 談話会
12月の談話会を以下のように企画いたしました.奮ってご参加ください.
日 時: 12月 22日(木) 15時30分~17時 (15時からティータイム)
場 所: 自然学系棟D棟 509 教室
講 演 者:植田 一石 氏 (東京大学 数理科学研究科)
題 目: Grassmann多様体上の完全可積分系とミラー対称性
概 要:
Grassmann多様体は複素幾何やシンプレクティック幾何学が表現論と交差する重要な対象であり、数学の進歩とともにその研究は深化を繰り返している。この講演では、Gromov-Witten不変量や量子コホモロジー、ミラー対称性、完全可積分系、クラスター代数などとGrassmann多様体の関係の一端を紹介したい。
日 時: 12月 22日(木) 15時30分~17時 (15時からティータイム)
場 所: 自然学系棟D棟 509 教室
講 演 者:植田 一石 氏 (東京大学 数理科学研究科)
題 目: Grassmann多様体上の完全可積分系とミラー対称性
概 要:
Grassmann多様体は複素幾何やシンプレクティック幾何学が表現論と交差する重要な対象であり、数学の進歩とともにその研究は深化を繰り返している。この講演では、Gromov-Witten不変量や量子コホモロジー、ミラー対称性、完全可積分系、クラスター代数などとGrassmann多様体の関係の一端を紹介したい。
数理物質融合科学センター 第6回 数理連携サロン
筑波大学数理物質融合科学センター (CiRfSE) では、分野横断的な研究交流の一助となることを目指し、互いの研究分野の相互理解を推進する場として数理連携サロンを開催します。
今回は「人工知能」をキーワードにしています。興味のある方はお気軽にご参加ください。
日時・場所
2016年12月5日(月) 15:15~17:15
筑波大学第一エリア 自然系学系D棟 D509セミナー室
プログラム
15:45~15:45
「大規模固有値解析エンジンの開発とそのシミュレーション・データ解析への応用」
櫻井鉄也(筑波大学 システム情報系)
16:00-16:30
「限量記号消去を推論器とする数学入試問題の自動解答器」
「限量記号消去を推論器とする数学入試問題の自動解答器」
岩根秀直((株)富士通研究所/国立情報学研究所)
16:45-17:15
「大学入試の数列問題を解く自動推論アルゴリズム」
「大学入試の数列問題を解く自動推論アルゴリズム」
照井 章(筑波大学 数理物質系)
14 時 45 分から 15 時 15 分までと 17 時 15 分 から 18 時までは tea time を設けます。他分野の研究者と気軽に交流できる機会です。ご自由にご歓談下さい。
お問い合わせ先
筑波大学数理物質融合科学センター (CiRfSE)
数理物質系数学域 青嶋 誠 (aoshima@math.tsukuba.ac.jp)