新着情報

新着情報

解析セミナー Michael Dreher氏

 筑波大学解析セミナーを下記のように行いますのでご案内申し上げます.
 皆様のご参加をお待ちしております.

 ------ 筑波大学解析セミナーのお知らせ  ------

 日  時: 9月20日(水) 15時30分 〜 17時
    場  所 : 筑波大学 自然系学系 D棟 D509教室
 講 演 者: Michael Dreher (University of Rostock)
 題  目: Incompressible limits for generalisations to symmetrisable systems

 -----------------------------------------------
 なお,筑波大学解析セミナーホームページ
 (http://www.math.tsukuba.ac.jp/~analysis/)に
 講演に関する情報を掲載しております.

連絡先:
 桑原 敏郎 (kuwabara-at-math.tsukuba.ac.jp)

トポロジーセミナー(2017/09/04)

日時:2017年9月4日(月)16:10〜17:10

場所:筑波大学 自然系学系D棟D509

講演者:Min Hoon Kim 氏 (Korea Institute for Advanced Study)

講演題目:Irreducible 3-manifolds that cannot be obtained by 0-surgery on a knot

アブストラクト:We give infinitely many examples of closed, orientable, irreducible 3-manifolds $M$ such that $b_1(M)=1$ and $\pi_1(M)$ has weight 1, but $M$ is not the result of Dehn surgery along a knot in the 3-sphere.
This answers a question of Aschenbrenner, Friedl and Wilton.
This is joint work with Matt Hedden and Kyungbae Park.

トポロジーセミナー(2017/09/04)

日時:2017年9月4日(月)15:00〜16:00

場所:筑波大学 自然系学系D棟D509

講演者:
山田翔平 氏

講演題目:Ideal classes and Cappell-Shaneson homotopy 4-spheres

アブストラクト:Cappell と Shaneson は、3次元トーラスの mapping torus を手術することにより4次元のホモトピー球面を無数に構成する方法を示した。
Gompf はこのホモトピー球面の微分同相型を固定したまま、mapping torus の貼り合わせ写像(およびそれに対応する行列)を取りかえる操作を新たに導入した。
本講演ではこの操作の応用を進めて、行列のトレースがある程度小さい場合にはその行列をもとに構成される Cappell-Shaneson ホモトピー球面が通常の4次元球面に微分同相であることを証明する。トレースを固定するごとに行列が共役類を除いて有限個だけ現れることは古くから知られており、また大半のトレースでは MAGMA を用いてそれら有限個の完全代表系を具体的に列挙することが可能である。この計算は代数的整数論によって基礎付けられているが、一方で例外的に MAGMA による計算の困難なトレースも無数に存在する。たとえばトレースが27の場合はその例外である。本講演では行列のトレースが27の場合についても、Cappell-Shaneson ホモトピー球面が通常の4次元球面に微分同相であることを証明する。

なお、この研究は Min Hoon Kim 氏との共同研究である。

解析セミナー Jens Christensen氏

筑波大学解析セミナーを下記のように行いますのでご案内申し上げます.
 皆様のご参加をお待ちしております.

 ------ 筑波大学解析セミナーのお知らせ  ------

 日  時: 8月4日(金) 16時30分 〜 17時30分
    場  所 : 筑波大学 自然系学系 D棟 D509教室
 講 演 者: Jens Christensen (Colgate University, USA)
 題  目: Wavelet theory with an application to complex analysis

   講演要旨:
Wavelet theory has been an active area of research
for around 40 years. In this talk we first present a machinery,
called coorbit theory, which uses continuous wavelet transforms
in order to provide atomic decompositions for a large collection of Banach 
spaces. The theory was initiated by Feichtinger and Groechenig,
but we present a recent generalization which is more widely applicable.
Next we present an application to complex analysis.
Due to work by Rudin, Coifman and Rochberg as well as Luecking,
it has long been known that Bergman spaces have atomic decompositions,
where the atoms are samples of the Bergman kernel.
We use coorbit theory to provide a much larger class of atoms
for Bergman spaces on the unit ball.
This class of atoms includes translates of polynomials
under the discrete series representation of SU(n,1).

 -----------------------------------------------

通常の解析セミナーと曜日・時間が異なりますのでご注意ください。

微分幾何学火曜セミナー(7月25日)

日時:7月25日(火)15時15分から(16時45分頃まで)

場所:筑波大学自然系学系棟D棟 5階 D509

講演者:櫻井陽平氏(筑波大学)

講演題目:1-重み付きRicci曲率の下からの有界性とエントロピーの凸性について

講演要旨:
 重み付きRicci曲率はRicci曲率のある種の一般化であり,重み付きRiemann多様体の振る舞いを制御する.重み付きRicci曲率はあるパラメーターを備えているが,従来はそのパラメーターが多様体の次元以上の場合が主な研究対象であった.しかし最近では,多様体の次元未満の場合に関する研究も徐々に行われつつある.
 本講演では重み付きRicci曲率のパラメーターが多様体の次元未満の場合,特に1の場合を取り扱う.このとき,重み付きRicci曲率がある関数で下から押さえられることと,Wasserstein空間上のエントロピーがLott-Villani,Sturm型の凸性を満たすことが同値であることを説明する.さらにその同値性から導かれるBrunn-Minkowski型不等式や関数不等式を紹介する.