新着情報
2019年1月の記事一覧
茶話会
日 時:
2019年1月30日(水)15:15~17:15
場 所:
筑波大学第一エリア 自然系学系棟D509教室
講演者:
小嶋和法(トヨタ自動車(株)未来創生センターS-フロンティア部未来社会工学研究室)
河内健史(トヨタ自動車(株)未来創生センターS-フロンティア部未来社会工学研究室)
講演題目:
地域未来の次世代自動車交通基盤 – 筑波大学未来社会工学開発研究センターの取り組み
アブストラクト:
昨今、自動車をとりまく状況としてコネクテッド、自動運転、シェアリング、電動化、いわゆるCASEと呼ばれるモビリティーイノベーションが起こりつつある。このモビリティイノベーションの社会応用による社会課題の解決と経済成長の両立を目指し筑波大学とトヨタ自動車が共同で設立した未来社会工学開発研究センターの活動内容について紹介する。
プログラム
15:15 ~ 15:30 ティータイム
15:30 ~ 16:00 第一部(講演者:小嶋和法)
16:15 ~ 16:45 第二部(講演者:河内健史)
17:00 ~ 17:15 ティータイム
Diophantine Analysis and Related Fields 2019
Diophantine Analysis and Related Fields 2019
2019 年3 月7- 9 日 [7-9, March, 2019]
筑波大学自然学系棟D509
D509, Institute of Mathematics, University of Tsukuba
世話人:秋山 茂樹 (筑波大学), 天羽 雅昭 (群馬大学), 平田 典子 (日本大学理工 学部),
桂田 昌紀 (慶應義塾大学経済学部), 村田 玲音 (明治学院大学),
岡崎 龍太郎 (東京大学非常勤講師), 田中 孝明 (慶應義塾大学理工学部)
Local Organizers: 秋山 茂樹 (筑波大学), 三河 寛 (筑波大学), 金子 元 (筑波 大学)
プログラムはこちらとなります.
Darf2019prog.pdf
2019 年3 月7- 9 日 [7-9, March, 2019]
筑波大学自然学系棟D509
D509, Institute of Mathematics, University of Tsukuba
世話人:秋山 茂樹 (筑波大学), 天羽 雅昭 (群馬大学), 平田 典子 (日本大学理工 学部),
桂田 昌紀 (慶應義塾大学経済学部), 村田 玲音 (明治学院大学),
岡崎 龍太郎 (東京大学非常勤講師), 田中 孝明 (慶應義塾大学理工学部)
Local Organizers: 秋山 茂樹 (筑波大学), 三河 寛 (筑波大学), 金子 元 (筑波 大学)
プログラムはこちらとなります.
Darf2019prog.pdf
トポロジーセミナー(2019/02/12)
日時:2019年2月12日(火)13:30〜15:00
場所:筑波大学自然系学系D棟D814
講演者:加藤久男 氏(筑波大学 数理物質系)
講演題目:Some topics on continuum theory and chaotic topological dynamics
アブストラクト:計算機の発達により、力学系に出現する複雑な図形の可視化が可能になり、例えばフラクタル図形やストレンジ・アトラクターなどの多くの図形の具体例を目にするようになってきました。
一般に、複雑(カオス的)な位相力学系は複雑なトポロジーを導くことが知られています。空間が2次元以上の場合には、力学的な位相構造は複雑ですが(軌道の複雑性やエルゴート性など)、空間自体の複雑性までは影響を及ぼすことは多くありません。しかし空間が0、1次元の場合には、カオス的な力学系を許容するその空間自体が非常に複雑になることが予想されます。
0次元の場合はカントール集合ですので、1次元の場合が問題になります。
このセミナーでは、力学系理論に登場する数多くの“カオス”の中で特に“拡大性・位相エントロピー”などを扱います。
また連続体論では連続体の“分解不可能性”が特に重要な概念として知られています。
こうした力学系と連続体論の異なる分野の重要な概念が密接に関係し融合している幾つかの定理を紹介したいと思います。
また時間があれば、加藤の研究のこれまでの流れ(院生時代 ⇒ 現在)などお話したいと思います。
場所:筑波大学自然系学系D棟D814
講演者:加藤久男 氏(筑波大学 数理物質系)
講演題目:Some topics on continuum theory and chaotic topological dynamics
アブストラクト:計算機の発達により、力学系に出現する複雑な図形の可視化が可能になり、例えばフラクタル図形やストレンジ・アトラクターなどの多くの図形の具体例を目にするようになってきました。
一般に、複雑(カオス的)な位相力学系は複雑なトポロジーを導くことが知られています。空間が2次元以上の場合には、力学的な位相構造は複雑ですが(軌道の複雑性やエルゴート性など)、空間自体の複雑性までは影響を及ぼすことは多くありません。しかし空間が0、1次元の場合には、カオス的な力学系を許容するその空間自体が非常に複雑になることが予想されます。
0次元の場合はカントール集合ですので、1次元の場合が問題になります。
このセミナーでは、力学系理論に登場する数多くの“カオス”の中で特に“拡大性・位相エントロピー”などを扱います。
また連続体論では連続体の“分解不可能性”が特に重要な概念として知られています。
こうした力学系と連続体論の異なる分野の重要な概念が密接に関係し融合している幾つかの定理を紹介したいと思います。
また時間があれば、加藤の研究のこれまでの流れ(院生時代 ⇒ 現在)などお話したいと思います。