新着情報

カテゴリ:微分幾何セミナー

微分幾何火曜セミナー (1月8日)

日時: 2013年1月8日(火) 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田丸博士 氏 (広島大学)
タイトル: リー群上の左不変計量の幾何と部分多様体論

概要:
各リー群上の左不変計量の全体は非コンパクト対称空間となることから, 左不変計量の幾何の研究には非コンパクト対称空間への群作用が自然に登場する. 本講演では, 特に 3 次元可解リー群の場合に, 非コンパクト対称空間へのcohomogeneity one 作用と, 左不変な代数的 Ricci soliton の様相が, 極めて良く対応していることを述べる. また, その高次元リー群への一般化や擬リーマン版についても触れる予定である.

微分幾何火曜セミナー(11月13日)

日時: 11月13日(火)  15:15~16:45
場所: 自然系学系棟B627

講演者: 三石史人 氏 (東北大)
タイトル: アレクサンドロフ空間の局所リプシッツ可縮性とその応用

概要:
アレクサンドロフ空間とは断面曲率の下限を備えた距離空間です。多様体の収束・崩壊理論の観点から、アレクサンドロフ空間の研究は重要であり、その局所的・大域的な性質が色々と判明しています。例えば、ペレルマンによって、アレクサンドロフ空間は位相的に局所可縮である事が知られています。今回、その証明と異なる方法を取ることによって、主張「局所的な一点へのホモトピーがリプシッツ写像で取れる」事を証明しました。講演では、主張の証明のアイディアと応用を述べます。

微分幾何火曜セミナー(10月23日)

日時: 2012年10月23日(火) 15:15~16:45
場所: 自然系学系棟B627

講演者: 守屋克洋 (筑波大学)
タイトル: 調和逆平均曲率曲面の変換

概要:
調和逆平均曲率曲面とは平均曲率の逆数が調和関数である3次元ユークリッド空間内の曲面である。Bobenkoによる、曲面の動標高を2×2行列を用いて書く定式を通じた曲面論とソリトン理論の関係の中で導入された概念で、変換が分類されている。本講演では、四元数的正則幾何の定式化を用い、調和逆平均曲率曲面を自然に含む曲面のクラスを導入し、特別なベックルント変換とダルブー変換の間に成り立つ関係を報告する。これらの議論はウィルモア曲面の場合と平行に行われる。

微分幾何火曜セミナー(10月2日)

日時: 2012年10月2日(火) 15:15~16:45
場所: 自然系学系棟B627

講演者: 相山玲子(筑波大学)
タイトル: Curvature ellipses of surfaces in Euclidean 4-space

概要:
4次元Euclid空間内の曲面の曲率楕円とは,各接平面内の単位円周を第二基本形式によってうつした像である,各法空間内の楕円です.各法空間内で曲率楕円の位置を判別するための新しい方法を与え,曲率楕円が原点を通る直線内の線分に退化している場合の様子について報告します.

微分幾何セミナー: 田崎博之 氏 (6/19)

日時: 2012年6月19日(火) 15:15~16:45
場所: 自然系学系棟 B627
講演者: 田崎博之(筑波大)
タイトル: コンパクト型Hermite対称空間の二つの実形の交叉II

概要:
今回の発表内容は田中真紀子さんとの共同研究の結果にもとづいています。​2010年1月の火曜セミナーでコンパクト型​Hermite対称空間の二つの実形の交叉に関する田中さんとの共同研究について講演しました。そこでは二つの実形の交叉が対蹠集合になることを示し、それを利用して交叉の性質を詳しく調べました。特に既約コンパクト型​Hermite対称空間の二つの実形の交点数を完全に決定しました。今回の講演ではこれまでの結果を利用してさらに既約ではない場合のコンパクト型​Hermite対称空間の二つの実形の交点数を完全に決定します。これには等長変換群や正則等長変換群の単位連結成分による剰余群の構造に関する村上信吾先生、竹内勝先生の結果が鍵になりました。

微分幾何セミナー: 長谷川敬三 氏 (6/12)

日時: 2012年6月12日(火) 15:15~16:45
場所: 自然系学系棟 B814
講演者: 長谷川敬三 氏 (新潟大学)
タイトル: Non-Kaehler homgeneous geometry -- pseudo-Kaehler and locally conformally Kaehler structures

概要:
Kaehler構造の自然な一般化として擬​Kaehlerおよび局所共形K​aehler構造がある。この講演において,おもに等質および局所等質多様体上の局所共形​Kaehler構造について,基本事項を踏まえて出来る限り分かりやすく,最近の研究動向まで話をしたい。

微分幾何セミナー: 伊藤健一氏(6/5)


日時: 2012年6月5日(火) 15:15~16:45
講演者: 伊藤健一 (筑波大学)
タイトル: Absence of embedded eigenvalues for the Schrödinger operator on manifold with ends

概要:
増大するエンドを持つ多様体上のSchrödinger作用素に対し,ある臨界値より大きな$L^2$-固有値が存在しないことを示す.この臨界値はエンドとポテンシャルの遠方での振る舞いから計算され,典型的な例では連続スペクトルの下限に一致する.エンドの形状に関する仮定をある凸関数の存在で抽象的に定式化することで,漸近的にEuclid型なエンドと漸近的に双曲型なエンドの両者を同時に扱うことができる.証明は固有関数に対する先験的超指数減衰評価と超指数減衰する固有関数の非存在の二段階に分けて行われ,ともにMourre型交換子評価が鍵となる.
本講演はE. Skibsted氏(Aarhus大学)との共同研究に基づく.

筑波大学微分幾何学火曜セミナー

微分幾何セミナー: 北別府悠氏(5/29)


日時: 2012年5月29日(火) 15:15~16:45
場所: 自然系学系棟B627
講演者: 北別府悠氏(東北大・理)
タイトル: 測度距離空間上の coarse Ricci 曲率

概要:
距離空間とその上のランダムウォークに対して定義されるcoarse Ricci 曲率と測度距離空間上で定義される曲率次元条件の関係はよく分かっていませんでした。今回 Bishop-Gromov不等式を通してこの二つの概念の関係を調べることができたのでそれについてお話しします。また例を通してランダムウォークの取り方の重要性についても述べたいと思います。

筑波大学微分幾何学火曜セミナー

微分幾何セミナー: 田崎博之氏 (5/15)

日時: 2012年5月15日(火) 15:15~16:45
場所: B627
講演者: 田崎博之(筑波大)
タイトル: 複素旗多様体内の実旗多様体の交叉の構造

詳細:
今回の発表内容は入江博さん、酒井高司さんとの共同研究の結果にもとづいています。一般化された複素旗多様体には一般化された対称空間の構造が入り、その点対称に関する対蹠集合は点対称の次数に依存せずに定まることを示します。さらに複素ベクトル空間の複素部分空間の列からなる複素旗多様体内の実旗多様体同士の交叉が対蹠集合になることを証明します。これはコンパクト型Hermite対称空間内の実形同士の交叉が対蹠集合になるという田中真紀子さんとの共同研究の結果の一部の拡張になっています。

筑波大学微分幾何学火曜セミナー