新着情報

新着情報

トポロジーセミナー(2018/11/28)

日時:2018年11月28日(水)16:00〜17:00

場所:筑波大学 自然系学系D棟D509

講演者:山口祥司 氏 (秋田大学 教育文化学部)

講演題目:ねじれアレキサンダー不変量の漸近挙動と結び目の外部空間の幾何構造について
(The asymptotic behavior of twisted Alexander invariant and the geometric structures of knot exteriors)

アブストラクト:基本群の$SL(2,\mathbb{C})$表現から3次元多様体の不変量の列を組織的に構成する方法を紹介し、構成した不変量の列の振る舞いと3次元トポロジーおよび結び目理論との関係を解説する。
本講演では特にねじれアレキサンダー不変量やライデマイスタートーションとよばれる不変量の漸近挙動に注目し、結び目の外部空間の幾何構造との関係について得られた結果を概説する。
(We review how to construct a sequence of invariants of a 3-manifold from an $SL(2,\mathbb{C})$-representation of the fundamental group and discuss a relation between the asymptotic behavior of resulting invariants and the 3-dimensional topology or knot theory.
This talk especially deals with the asymptotic behaviors of the twisted Alexander invariant or the Reidemeister torsion.
We observe recent developments related to the geometric structures of knot exteriors.)

微分幾何学火曜セミナー(10月30日)

 下記の日程で微分幾何学火曜セミナーを開催いたしますので、興味がございます方は是非ご参加下さい。
(本セミナーは大学院科目「数学フロンティア」対象セミナーです。)

日時: 10月 30日(火) 15:15 〜 16:45
場所 : 筑波大学 自然系学系 D棟 D509教室
講演者: 楯 辰哉  氏 (東北大学大学院理学研究科)
題目:周期的ユニタリ推移作用素の局在化
アブストラクト:
近年コンピュータサイエンスや量子シミュレーションなどの分野において,量子ウォークという,ランダムウォークの量子論的類似と思われる概念が話題になり利用されている.量子ウォークとはユニタリ作用素によって定義される確率分布をさすが,その時間無限大での挙動は通常のランダムウォークと大きく異なる.その違いの一つとして簡単に局在化が起こることが挙げられる.本セミナーでは,量子ウォークやその一般化である周期的ユニタリ推移作用素とその局在化について説明した後,小松尭氏(横浜国大)との共同研究で得られた,高次元におけるグローバー型と言われる量子ウォークの局在化について解説する.

微分幾何・解析セミナー (10月24日)

下記の日程で微分幾何セミナー・解析セミナーを開催いたしますので、興味がございます方は是非ご参加下さい。
今回のセミナーは微分幾何セミナーと解析セミナーの合同開催になります。
(本セミナーは大学院科目「数学フロンティア」対象セミナーです。)

 ------ 筑波大学微分幾何・解析セミナーのお知らせ  ------

 日  時: 10月 24日(水) 15時半  〜 17時
   場  所 : 筑波大学 自然系学系 D棟 D509教室
 講 演 者: 野田知宣 氏 (明治薬科大)
 題  目:アフィン正準変換による発展とその応用について
 講演要旨:
 シンプレクティック多様体上の正準変換は Hamilton 系による発展の一般化であり、これには
 シンプレクティック容量という非自明な不変量が存在する。特に適当な有限次元ベクトル空間
 の余接束上のアフィン Hamilton 系に対するこの不変量は量子力学における不確定性原理、Bayes
 更新と深く関わる。本講演ではシンプレクティック容量と不確定性の最小単位との関係、多変量
 正規分布における母平均についての Bayes 更新がアフィン正準変換として具体的に実現出来る事
 を概説する。

代数特別セミナー

日時: 10月15日 16:00-17:30
場所: D814
講演者: Andrew William Macpherson (IPMU)
題目:  A Yoneda philosophy of correspondences
Abstract: Cohomology is bivariant, which means that to a morphism f it associates not only a pullback map f^*, but also (under certain conditions) an Umkehr map in the opposite direction. These maps satisfy a "push-pull" or "base change" identity. Everyone knows that this implies that cohomology can be thought of as a functor out of a certain category CORR of "correspondences", whose morphisms are "rooves" and whose composition law is defined by taking a fibre product of kernels.
 In higher category theory, specifying objects by describing the morphism spaces and composition law explicitly --- as we just did with correspondences --- is rather inconvenient. Rather, it is better to define things via their universal properties. In this talk, I will give a universal interpretation for CORR in terms of "bivariant functors" into an (∞,2)-category, which takes out the pain from constructing functors out of CORR.

連絡先: 木村健一郎

トポロジーセミナー(2018/10/30)

日時:2018年10月30日(火)16:00〜17:00

場所:筑波大学自然系学系D棟D814

講演者:Jung Hoon Lee 氏 (Chonbuk National University)

講演題目:A necessary condition for constituent knots of reducible genus two handlebody-knots 

アブストラクト:A knot K is a constituent knot of a genus two handlebody-knot H if there is a non-separating disk D in H such that the core of cl(H-N(D)) is K.
We characterize constituent knots of a non-trivial reducible genus two handlebody-knot in terms of an incompressible torus (or two incompressible tori) in the exterior of the handlebody-knot.