新着情報

Category:その他

茶話会 (11/20)

11月の茶話会を以下のように企画しております.
ご興味のある方はぜひご参加ください.
(なお,本セミナーは大学院科目「数学フロンティア」対象セミナーです)

日時: 11 月 20 日 (水) 15:15~16:45
場所: 筑波大学第一エリア自然系学系棟 B 棟 B114 教室(通常と会場が異なりますのでご注意ください)
講演者:  和田 健太郎氏 (筑波大学・社会工学域)
題目: 工学における交通流研究:ボトルネックの振る舞いとその理論化
概要:
交通渋滞とは,道路上のボトルネック地点にその交通容量を超 えた交通需要が到着し,待ち行列が形成される現象である. ただし,ボトルネックと一口で言っても,車線減少・分流・合流・織り込み・サグ・トンネルなど様々であり,そこでの運転挙動やボトルネックの顕在化メカニズムは多種多様である. 本講演では,流体力学的 (KW: Kinematic Wave) モデルおよびその拡張モデルに基づく交通渋滞現象の解析法や解析事例をいくつか紹介する. 具体的には,(i) KW モデルの変分問題としての表現と複雑な境界条件の取り扱い,(ii) 様々な座標系における KW モデルと交通流の異質性の表現,(iii) 渋滞中のサグ部における安定交通流現象の解析,の話題を予定している.

teatime_2019_10.pdf

研究科修了生との懇談会(数学類)

数学類主催による研究科修了生との懇談会を開催します。



日時:7月22日(月)2限 10:10〜11:25
場所:1E403セミナー室
講師:宮本次郎先生(岩手県立一関第一高等学校)
題目:高校数学教員は大学数学の夢を見るか
概要:
 大学・大学院を終わって高校数学教員として37年も生きてきました。毎日授業をしたり、算数・数学の教員が集まる研究会に参加して自分の授業を見つめなおしたり、日々生徒たちのいろいろな活動と付き合いながら、大学時代に学んだ数学が自分自身のこんなところに影響しているものかと驚くことが多くありました。
 自分と同じように大学で数学を学んだ方々が社会の中で活躍している様子に触れることも多くありました。
 そういういくつかのエピソードをあげながら、大学で学んだ数学が、今の仕事にどのように影響を及ぼしているか紹介したいと考えています。


講師の宮本先生は、筑波大学大学院の出身で、

「90分で実感できる微積分の考え方」https://sciencei.sbcr.jp/archives/2016/10/si90.html
「面白いほどよくわかる高校数学(関数編)」https://sciencei.sbcr.jp/archives/2016/01/_2_1100_20161.html

を執筆され、高校教科書の執筆にも携わったことのある先生です。

中学・高校教員になろうと思っている学生はもちろん、その他の学生にとっても、先輩のお話は、今後の進路を考える上で何らかの参考になると思います。

茶話会


 7月の茶話会を以下のように企画しております.
 ご興味のある方はぜひご参加ください.
 (なお,本セミナーは大学院科目「数学フロンティア」対象セミナーです)

 日 時 7月31日(水) 15時15分~16時45分
 場 所 筑波大学第一エリア自然系学系棟D棟 509教室
 講演者 井ノ口 順一氏(筑波大学・数学域)
 題 目 カーデザインの幾何学

 概 要:
 乗用車などの工業意匠設計 (Industrial Shape Design) や 形状処理 (CAGD, Computer Aided Geometric Design) においては,特殊な性質をもつ平面曲線が設計部品として用いられている.高度に美的な外観を与える曲面を生成するための曲線(キーライン曲線)が工業意匠設計の研究対象である.現在ではB-スプライン曲線およびNURBSと呼ばれる曲線が主に活用されているが,これらの曲線で,デザイン上必要な曲線がすべて生成できるわけではない.本講演では可積分系理論・離散微分幾何(Discrete Differential Geometry)に基づく純国産の生成方法に関する研究成果を報告する.本講演は三浦憲二郎氏(静岡大学),梶原健司氏(九州大学IMI),Wolfgang K. Schief氏(The University of New South Wales)との学際的国際共同研究に基づく. 

第3回茶話会 (F-MIRAI)

日 時: 2019年5月17日(金) 15:15〜17:15

場 所: 筑波大学第一エリア自然系学系棟D棟 D509 教室

講演者: 筑波大学未来社会工学開発研究センター

題 目: 地域社会の次世代自動車交通基盤 〜つくばモデルの実現に向けて〜

概 要: 

産業競争力懇談会(COCN)2018 年度推進テーマの最終報告書が2月に公開された. 第一部は, この最終報告書をもとに未来社会工学開発研究センターが取り組むプロジェクトについて紹介する. 特に, プロジェクト実現のためのユースケースである「キャンパス MaaS」と「医療 MaaS」(MaaS:Mobility as a Service)を「つくばモデル」として構築することを目指しており, この取り組みについて紹介する.

第二部では, つくばモデル実現のために収集している実測データやその活用法について紹介する. また, 学内に設置する 25m プール模擬試験場で事前検討する内容や, 直面している課題について共有する.


この茶話会は、数学域が筑波大学未来社会工学開発研究センター (F-MIRAI) と進める共同研究の一環で開催するものです。

第2回RCMSサロン(7/13)

第2回 RCMS サロン「ベイズ統計の展開」のお知らせ

2018年7月13日(金)15:15 〜18:00
筑波大学自然系学系棟D509号室
数理科学研究コア(RCMS)では数理科学全般における様々な研究分野の相互理解を推進する場として,「RCMSサロン」を開催しています.今回はベイズ統計学を中心に3名の講師に講演して頂きます.
事前申し込みは不要です.どうぞお気軽にお越し下さい.皆様のご参加をお待ちしております.

日時:2018年7月13日(金)15:15 -- 18:00
場所:筑波大学第一エリア 自然系学系棟 D509
プログラム

15:15 -- 15:30 ティータイム
15:30 -- 16:00  小池健一(筑波大学数理物質系)
       「ベイズ統計学入門」 
16:15 -- 16:45  岡田幸彦(筑波大学システム情報系)
       「地域健康政策へのベイジアンネットワークの応用」  
17:00 -- 17:30  長尾大道(東京大学地震研究所)
       「4次元変分法データ同化の数理」
17:30 -- 18:00  ティータイム

               お問い合わせ先
               世話人:小池健一(筑波大学数理物質系数学域) 
               koike_at_math.tsukuba.ac.jp

数学特別セミナー (2月15日・16日)

講演者:田坂 浩二 氏
(名古屋大学多元数理科学研究科, 日本学術振興会特別研究員 PD)

会場:自然系学系 D棟 814

題目・日時・概要:

(1) 2重Eisenstein級数とその応用, 2月15日(月) 14:00~16:00

2重Eisenstein級数は, 2重ゼータ値とEisenstein級数のある種の共通の一般化である. これは, Zagierによる2重ゼータ値とモジュラー形式の間の次元の関係に関する結果を証明する一つの手法を与え, モジュラー形式の問題にも応用がある. 講演では, 2重ゼータ値とモジュラー形式の関係(Zagier の結果)から2重Eisenstein級数に至る道のりとそのモジュラー形式の問題への応用についてなるべく詳しく述べる.

(2) 多重Eisenstein級数の複シャッフル関係式, 2月16日(火) 10:30~12:00

この講演では, 多重Eisenstein級数の複シャッフル関係式の証明について, 可能な限り詳細を述べる. これは, 共同研究者の Henrik Bachmann 氏との共同研究で得られた結果である.

計算数学セミナー(12月18日)

日時: 2013年12月18日(水) 13:30〜14:30

場所: 自然系学系棟 D 棟 D814 セミナー室

講演者:  渋田 敬史九州大学 マス・フォア・インダストリ研究所

題目特異点解消を用いない,解析的曲線の既約性判定法

概要:

解析的平面曲線の特異点解消を用いない既約性判定法は、Abhyankar によって与えられている。 
本講演では、一般の余次元の解析的曲線に対する、特異点解消を用いない既約性判定法を与え、その計算手法を解説する。
この既約性判定法は Abhyankar によるアプローチとはやや異なり、イニシャルイ デアルやパラメタ付きの曲線の交点数の計算などを用いる、計算的側面の強いものである。

世話人: 田島 慎一,照井 章

連絡先照井 章 (terui at math.tsukuba.ac.jp) (at => @)


掲示・チラシはこちら: 20131218-poster.pdf


計算数学セミナー(11月22日)

日時: 2013年11月22日(金) 15:30〜16:40

場所: 自然系学系棟 D 棟 D509 セミナー室

講演者:  小原 功任氏(金沢大学 理工研究域 数物科学系)

題目SO(3) 上の Fisher 分布の最尤推定問題とホロノミック勾配法

概要:

近年、指数型分布族の最尤推定に対する新しい武器としてホロノミック勾配法が開発された。パラメータ付きの指数型確率密度関数を、パラメータに関するホロノミック関数と捉えることで、D加群の理論・計算代数・数値解析などの手法が適用可能となる。これらの手法を組合せて最尤推定を行うのが、ホロノミック勾配法である。本講演では、ホロノミック勾配法の概要と、具体的な場合として、SO(3) 上の Fisher 分布の最尤推定問題について述べる。

世話人: 田島 慎一,照井 章

連絡先照井 章 (terui at math.tsukuba.ac.jp) (at => @)


掲示・チラシはこちら: 20131122-poster.pdf

数学専攻 情報数学分野 研究計画発表会(7月30日)

下記の要領で数学専攻博士前期課程2年次生(情報数学分野 M2)の研究計画発表会を行います.多くの方のご来聴を期待しております.


日時:2013年7月30日(火)10時00分~12時00分

場所:自然系学系棟D棟 D509


プログラム

10時00分~10時15分:根本大輝 接合関数を用いた従属性尺度の考察

10時15分~10時30分:石井 晶 高次元小標本の幾何学的表現と最大固有値の漸近分布

10時30分~10時45分:田代 浩 独立成分分析の理論と応用について

10時45分~11時00分:小林宗広 Indiscernible ArrayとIndiscernible Tree
11時00分~11時15分:池田展朗 モデル理論の Many-sorted Model への拡張

11時15分~11時30分:藤田貴久 TBA

11時30分~11時45分:山崎朋幸 様々な多角形タイリングについて

11時45分~12時00分:大津 融  p進数計算のアルゴリズム


掲示・チラシはこちら:研究計画発表会2013.pdf

計算数学セミナー(7月19日)

今回のご講演は,学群(部)4 年生や大学院生の方々を主な対象に,入門的解説も含めてお願いしております.多数の方々のご来聴を歓迎します.


タイトル: グレブナ基底を用いたパラメトリック整数計画アルゴリズムについて

講演者: 渋田 敬史氏(九州大学 マス・フォア・インダストリ研究所

日時: 2013 年7 月19 日(金) 16:00〜17:00

場所: 自然系学系棟 D 棟 D814 セミナー室

概要:

パラメトリック整数計画問題とは線形制約の右辺ベクトルがパラメタになっているような整数計画問題である.コンパイラ最適化等への応用に動機付けられ,Feautrier のアルゴリズム,Verdoolaege のアルゴリズムなど種々のアルゴリズムが提案されているが,これらのアルゴリズムの時間計算量評価は難しい.
本講演では,Hosten-Thomas の代数的アルゴリズムによるパラメトリック整数計画問題求解法を紹介し, それがある意味で最も単純な解を計算することを示す.
また, アルゴリズムで中心的な役割を果たす標準対分解を単調論理関数双対化の観点から眺めることで,パラメトリック整数計画問題は $$2^{O(n(\log n+\log a_{\max}))}$$ 時間で解くことができることを示す(ただし, n は変数の数, $$a_{\max}$$ は行列の要素の最大絶対値, 行列のランクは定数とする) .

世話人: 田島 慎一,照井 章

連絡先照井 章 (terui at math.tsukuba.ac.jp) (at => @)


掲示・チラシはこちら:20130719-poster.pdf