新着情報

カテゴリ:談話会

筑波大学数学談話会 (5月21日)

日時: 5月21日 (木曜日)、 15:30--16:30 (15:00より tea)

場所: 自然系学系 D棟 509

講演者: 井ノ口 順一 氏 (筑波大学)

題目: 可積分幾何・差分幾何

概要: 無限可積分系とよばれている非線型偏微分方程式の多くが, 微分幾何に密接に関わることが知られている. 無限可積分系を構造方程式にもつ曲線や曲面の研究は「可積分幾何」とよばれるようになった. 本講演では, 現在,可積分幾何で関心をもたれている研究対象の中から, 「3次元幾何 (Thurson 幾何)における極小曲面の構成」について解説する(時間が許せば曲線の差分幾何にも触れたい).

筑波大学数学談話会 (12月4日)

日時: 12月4日(木曜日)、15:30--17:00 (15:00 より tea )

場所: 自然系学系 D棟 509

講演者: 岩根 秀直 氏 (国立情報学研究所)

題目: 計算機が数学試験問題を解く - 数式処理編

概要: 国立情報学研究所を中心として進めている「ロボットは東大に入れるか」プロジェクトでは, 「人工知能」としてまとめられる諸技術に対する総合的ベンチマークとして, 様々な科目の大学入試問題を計算機で直接解くことに挑戦している.

我々は数学入試問題に取り組んでおり, 開発中のシステムは問題文を入力として, 自然言語処理により構築された一階述語論理式を数式処理により問題を解く方法をとっている. 本講演では, 数学入試問題の数式処理による解法と, 自然言語処理との接合による課題解決方法について紹介する.

筑波大学数学談話会 (11月20日)

講演者: 中島 誠 氏 (筑波大学)

題目: 生物の人口模型と(確率)偏微分方程式

概要: 数学では生物の個体数の時間変動を表すものとして有名なものでは微分方程式で現れるLogistic方程式やLotka-Volterra方程式などがある. 確率論においてもGalton-Watson過程という個体数の変動のランダム性を考慮して模型がある. さらに個体に空間の動きを加えた模型を考え, そこから自然な極限として現れる確率過程は非線形熱方程式や確率偏微分方程式との関連が知られている. 今回は時空間にランダムな要素を含めた生物の人口模型を考えたとき, 関連する非線形熱方程式や確率熱方程式はどのような影響を受けるのかについて話す.

筑波大学数学談話会 (10月16日)

日時:10月16日(木曜日)、15:30--16:30 (15:00よりお茶の時間)


場所:自然系学系棟D509


講演者:金子 元 氏 (筑波大学)


講演題目:Nonzero digitが少ないベキ級数の値の超越性および代数的独立性


概要:ほとんどすべての複素数が超越数であるにもかかわらず, 具体的に与えられた複素数が超越数であることを示す事は一般に難しい. 例えば, $$e+\pi$$は超越数であると予想されているが, まだ証明されていない. 関数の値の超越性および代数的独立性を示す事は数論において重要である. 本講演では, ベキ級数で与えられる関数に代数的数を代入した値の超越性および代数的独立性を調べる.

筑波大学数学談話会 (6月19日)

日時:6月19日(木曜日), 15:30--17:45 (15:00より tea )

場所:自然系学系 D棟 509

プログラム: (15:00--15:30 tea time)

15:30--16:30, 千原浩之 氏 (筑波大学)
題目:ユークリッド空間上のバーグマン変換と量子化
概要:ユークリッド空間上のバーグマン変換とよばれる積分変換は、関数をその超局所化を記述する正則関数へ変換してくれるので、超局所解析や準古典解析における有力な手段になっている。一方、この種の理論は信号処理等の応用分野の研究とも密接な関連がある。本講演では、まずこれらの話題をまとめて概観する。さらに、講演者の仕事や最近取り組んでいる課題を紹介する。

16:30--16:45 休憩

16:45--17:45, 平山至大 氏 (筑波大学)
題目:可微分力学系のエルゴード理論
概要:多様体上の保測な可微分写像の反復合成が生成する力学系のエルゴード理論について概説する.特に,エルゴード性やエントロピーの生成的な正則性に関する話題を紹介したい.

数学談話会(12月26日)

日時:2013年12月26日(木)15:30~16:30(15:00からお茶の時間)
場所:自然系学系棟D509

講演者:斉藤秀司 氏 (東京工業大学)
講演題目:Existence conjecture for smooth sheaves on varieties over finite fields

概要:
This is a joint work with Moritz Kerz. Let $$X$$ be a smooth variety over a finite field $$\mathbb{F}_q$$. For an integer $$r>0$$, let $${\cal S}_r(X)$$ be the set of lisse $$\overline{\mathbb{Q}_\ell}$$-sheaves on $$X$$ of rank $$r$$ up to isomorphism and up to semi-simplification. Let $$Cu(X)$$ be the set of normalizations of integral curves on $$X$$. Let $${\cal S}k_r(X)$$ be the set of systems $$(V_Z)_{Z\in Cu(X)}$$ with $$V_Z\in {\cal S}_r(Z)$$ such that
$$(V_Z)_{|Z\times _X Z'}=(V_{Z'})_{|Z\times _X Z'}$$ for $$Z,Z'\in Cu(X)$$.
The question is how to determine the image of the restriction map
 $$\tau:{\cal S}_r(X)\to {\cal S}k_r(X)$$,
i.e. when a system $$(V_Z)_{Z\in Cu(X)}$$ glues to a lisse $$\overline{\mathbb{Q}_\ell}$$-sheaf on $$X$$. We explain a conjecture of Deligne on the problem which describes the image in terms of a ramification condition at infinity and prove the conjecture in case $$r=1$$.

数学談話会(12月5日)

日時:2013年12月5日(木)15:30~17:00(15:00よりお茶の時間)
場所:自然系学系棟D509

講演者:松崎拓也 氏 (国立情報学研究所)
講演題目:計算機が数学試験問題を解く

概要:
国立情報学研究所を中心として進めている「ロボットは東大に入れるか」プロジェクトでは、
「人工知能」としてまとめられる諸技術に対する総合的ベンチマークとして、
様々な科目の大学入試問題を計算機で直接解くことに挑戦している。

本発表では、プロジェクトにおける数学試験問題に対する取り組みについて紹介する。
「数学問題を解く」とは何か、という問題定義から始め、自然言語で記述された問題を
論理式へ翻訳し、数式処理との接合により解を得るまでの流れについて述べる。

数学談話会(11月7日)

日時:2013年11月7日(木)15:30~16:30
場所:自然系学系棟D509

講師:大本亨 氏 (北海道大学)
講演題目:Image and discriminant Chern classes of stable maps

概要:In classical algebraic geometry,numerical characters of projective varietieswere extensively studied by means of enumeratingsingular points of naturally associated maps.A modern unified approach to such enumerative problemsis the theory of Thom polynomials based onthe classification of singularities of maps (Thom-Mather theory).In this talk I will introduce a new branch of the theory,in which we replace counting singular pointsby computing (weighted) Euler characteristics.In particular, I will talk about a universal formulaon (singular) Chern class of image varieties of maps.

●15:00からお茶の時間です。こちらもぜひご参加ください。また講演終了後、懇親会を予定しております。どうか奮ってご参加ください。

数学談話会 竹内耕太氏 (10月24日)

日付: 2013年10月24日(木) 15:30~16:30
場所: 自然系学系棟 D509

講演者:竹内 耕太 氏 (筑波大学)
講演題:ハイパーグラフの組み合わせ論とモデル理論

概要:モデル理論では数学的構造(群、環、体、グラフ、順序構造など)を安定性と呼ばれる指標を用いていくつかのクラスに分類する。構造Mが安定であるというのはきわめて大雑把に言うと、構造の自己同型全体のなす群による作用を考えたとき、その作用に関する軌道があまりたくさんは存在しない、という風に説明できる。
講演者は最近、安定性のひとつのクラスであるn-dependent theoryに対し、ハイパーグラフの組み合わせ論を用いて二つの特徴づけを与えた。証明で使われた道具はいくつかの分野で関連する話題が研究されており、そのような周辺の話題も交えながら研究成果について解説したい。

キーワード:universal minimal flow, Ramsey property, VC-dimension, Turan problem, indiscernibles

筑波大学数学談話会 (7月18日)

日時: 2013年7月18日(木)15:30-17:00 ※15:00からティータイム
場所: 自然系学系棟D509

講演者: 土岡俊介 氏 (IPMU)
講演題目: 対称群のモジュラー表現論の最近の話題について

概要:
2007年から2008年の間に、RouquierとBrundan-Kleshchevによって、正標数の対称群の群代数には、非自明な次数付き代数の構造が入ることが示された。前半でその背景や意義を解説し、後半でその射影表現類似に関する柏原正樹氏とSeok-Jin Kang氏との共同研究について解説する。