新着情報

新着情報

微分幾何学火曜セミナー (4月15日)

日時: 2014年4月15日(火) 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田崎博之 (筑波大学)
タイトル: 有向実Grassmann多様体の対蹠集合の系列と評価

概要: 有向実Grassmann多様体の極大対蹠集合は、有限集合内のある性質を持つ部分集合の族と一対一に対応すること、および階数 4 以下の場合の極大対蹠集合の分類を2013年1月の火曜セミナーで示しました。今回の講演では階数 4 以下の場合の極大対蹠集合の分類に現れた対蹠集合の系列を一般化し、これらがいつ極大になるか明らかにします。さらにこの系列を利用して、階数 5 の場合の対蹠集合の大きさの評価を与えます。

研究集会「リーマン幾何と幾何解析」(3月7日〜8日)

研究集会「リーマン幾何と幾何解析」を
下記の通り開催いたしますのでご案内申し上げます.
皆様のご参加をお待ちしております.


研究集会「リーマン幾何と幾何解析」
日時: 2014年3月7日(金)13時--8日(土)16時頃
場所: 筑波大学自然系学系棟 B棟2階 B215

プログラム:
3月7日(金)
13:00--14:00: 本多 正平 氏 (九州大学)
チーガー等周定数と$p$ラプラシアンとグロモフ・ハウスドルフ収束

14:15--15:15: 櫻井 陽平 氏 (筑波大学)
リッチ曲率が下に有界な境界付き多様体の剛性

15:45--16:45: 新倉 健人 氏 (東京工業大学)
リッチ平坦多様体の無限遠での崩壊現象について

17:00--18:00: 高橋 淳也 氏 (東北大学)
Partial collapsing and the spectrum of the Hodge-Laplacian

3月8日(土)
10:00--11:00: 三石 史人 氏 (東北大学)
カレントと測度ホモロジー

11:15--12:15: 小澤 龍ノ介 氏 (東北大学)
Limit formulas for metric measure invariants and phase
transition property

13:30--14:30: 野中 純 氏 (慶應義塾大学)
双曲空間における Coxeter 多面体について

14:45--15:45: 石田 政司 氏 (大阪大学)
Uniform Sobolev inequalities along geometric flows


世話人:
山口 孝男 (筑波大学)
永野 幸一 (筑波大学)

解析セミナー (3月5日)

日時: 2014年3月5日(水) 15:00~17:30
場所: 自然系学系棟 D509

15:00~15:50  Jean Vaillant 氏 (パリ第6大学)
Necessary and sufficient conditions of hyperbolicity for linear differential systems.

16:00~17:30  伊藤 健一 氏 (筑波大学)
Threshold properties of one-dimensional discrete Schrödinger operators.
(講演の概要はこちら をご覧ください.)

http://www.math.tsukuba.ac.jp/~analysis/

臨時解析セミナー(2月18日)

日  時: 2月18日(火)15時30分~17時00分
(曜日が通常と異なりますので,ご注意ください.)

講 演 者: Elmar Schrohe 氏 (Leibniz Universit\"at Hannover)

題  目: Solvability of a Degenerate Boundary Value Problem

要  旨: Following work of K.\ Taira we consider the boundary value problem
$$Au=f\text{ in } X,\qquad Lu=g \text{ on }\partial X,$$
where $X$ is a compact manifold with boundary,
$A$ is a strongly elliptic second order operator which in local coordinates is of the form
$$A=\sum_{jk}a^{jk}\partial_{x_j}\partial_{x_k}+\sum b^j\partial_{x_j} + c$$
with real coefficients $a^{jk}=a^{jk}, b^j,c$ in the Htlder class $C^\tau$, $\tau>2$.
We require that
$\sum a^{jk}\xi_j\xi_k\ge \alpha |\xi|^2$ for some $\alpha>0$ and  $0\not\equiv c\le0$.

The  boundary condition $L$ is assumed to be of the form
$$Lu = \mu_0\gamma_0u + \mu_1\gamma_1u,$$
where $\gamma_0$ is the evaluation map at the boundary
and $\gamma_1$ is the evaluation of the exterior normal derivative at the boundary.
The $C^\tau$-functions $\mu_0$ and $\mu_1$ on $\partial X$
are supposed to be nonnegative with $\mu_0+\mu_1$ strictly positive everywhere.

Using the calculus of pseudodifferential operators with symbols of limited regularity
we then show the solvability of the boundary value problem
in various classes of Sobolev and Zygmund spaces with regularity
depending on the smoothness $\tau$ of the coefficients.
We also study the resolvent in suitable sectors of the complex plane.

\hfill (joint work with M. Hassan Zadeh)

【 場所 】 自然学系D棟 509教室