新着情報

新着情報

筑波大学数学談話会 (11月20日)

講演者: 中島 誠 氏 (筑波大学)

題目: 生物の人口模型と(確率)偏微分方程式

概要: 数学では生物の個体数の時間変動を表すものとして有名なものでは微分方程式で現れるLogistic方程式やLotka-Volterra方程式などがある. 確率論においてもGalton-Watson過程という個体数の変動のランダム性を考慮して模型がある. さらに個体に空間の動きを加えた模型を考え, そこから自然な極限として現れる確率過程は非線形熱方程式や確率偏微分方程式との関連が知られている. 今回は時空間にランダムな要素を含めた生物の人口模型を考えたとき, 関連する非線形熱方程式や確率熱方程式はどのような影響を受けるのかについて話す.

Workshop on Statistical Methods for Large Complex Data

下記の科研費ワークショップについて、ご案内
申し上げます。
--------------------------------------------------------------------
科学研究費補助金 基盤研究(B) 22300094
「高次元データの理論と方法論の総合的研究(研究代表者:青嶋誠)」
学術研究助成基金助成金 挑戦的萌芽研究  26540010
「ビッグデータの統計学:理論の開拓と3Vへの挑戦 (研究代表者:青嶋誠)」
による

「Workshop on Statistical Methods for Large Complex Data」

世話人:
青嶋誠 (筑波大学)、佐藤美佳 (筑波大学)、矢田和善 (筑波大学)
Ming-Yen Cheng (National Taiwan University)
日 時: 2014年11月10日 (月) ~ 12日 (水)
場 所: 筑波大学自然系学系棟D棟 D509 (筑波キャンパス内)

内容・目的:http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/symposium.html

プログラムや懇親会などの最新情報は、下記サイトをご確認下さい。
随時更新していきます。
http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/workshop_detail.html

英語バージョンはこちらです:
http://www.math.tsukuba.ac.jp/~aoshima-lab/workshop_detail.html

なお、11日(火)に、以下の3名の著名な研究者による招待講演と指定討論
を予定しています。
Prof. Ming-Yen Cheng (National Taiwan University)
Prof. Ching-Kang Ing (Academia Sinica)
Prof. Mei-Hui Guo (National Sun Yat-sen University)

大学院集中講義

科目: 幾何学特論II (01BB049)
題目: ラグランジュ部分多様体と等径超曲面の幾何学

講師:  大仁田 義裕 教授 (大阪市立大学理学研究科数学教室&数学研究所)

日程:  1月5日(月)~7日(水) 10時~

教室:  自然系学系棟 D814

講義概要 近年のシンプレクティック幾何学の発展に伴い,ケーラー多様体のラグランジュ部分多様体の微分幾何学の研究への関心は益々のものがある。今回は,その基本的な概念の説明から最近の私の研究やその関連話題について講義したい。とくに,中国・北京の清華大学の馬輝(Hui Ma)副教授との共同研究を含む,標準球面の等径超曲面と複素2次超曲面のラグランジュ部分多様体の幾何学との関わりについて述べる。

1.     リーマン多様体の部分多様体の基本事項

2.     シンプレクティック多様体のラグランジュ部分多様体,運動量写像,ハミルトン変形

3.     ケーラー多様体のラグランジュ部分多様体の基本事項

4.     ハミルトン極小性,ハミルトン安定性とハミルトン剛性

5.     複素ユークリッド空間および複素射影空間のラグランジュ部分多様体

6.     ラグランジュ部分多様体としてのエルミート対称空間の実形

7.     複素2次超曲面のラグランジュ部分多様体と標準球面の超曲面幾何学

8.     標準球面の等径超曲面の構造・構成・分類

9.     等径超曲面のガウス像として得られる極小ラグランジュ部分多様体

10.    等径超曲面のガウス像のラグランジュ交叉問題

世話人 相山玲子(数理物質系数学域)

第1回数理連携サロン (11月11日)

第一回数理連携サロン

2014年11月11日 火曜日 15:15-17:15
筑波大学第一エリア 総合研究棟B0110 (会場が変わりましたのでご注意ください)

15:15-15:45 磯崎洋(筑波大学数理物質系 数学域・数理物質融合科学センター)
「格子上の逆散乱問題への数学からのアプローチ」

16:00-16:30 西堀英治(筑波大学数理物質系 物理学域・数理物質融合科学セン
ター・TIMS)
「X線構造計測における逆問題とその解決法」

16:45-17:15 遠藤智子(東京電機大学 情報環境学部 研究員)
「結晶構造を持つウェーブレットの紹介」

筑波大学数学談話会 (10月16日)

日時:10月16日(木曜日)、15:30--16:30 (15:00よりお茶の時間)


場所:自然系学系棟D509


講演者:金子 元 氏 (筑波大学)


講演題目:Nonzero digitが少ないベキ級数の値の超越性および代数的独立性


概要:ほとんどすべての複素数が超越数であるにもかかわらず, 具体的に与えられた複素数が超越数であることを示す事は一般に難しい. 例えば, $$e+\pi$$は超越数であると予想されているが, まだ証明されていない. 関数の値の超越性および代数的独立性を示す事は数論において重要である. 本講演では, ベキ級数で与えられる関数に代数的数を代入した値の超越性および代数的独立性を調べる.