汎用データベース

世話人:川村一宏,平山至大,石井敦,丹下基生,蓮井翔

日時 2009年11月19日(木)16:00~17:30
場所 筑波大学 自然系学系D棟 D814
講演者 Dušan Repovš 氏 (University of Ljubljana・スロベニア)
講演題目 Geometric topology of $(n\ge 5)$-dimensional Busemann $G$-spaces
アブストラクト We shall present a survey of the classical Busemann Conjecture, which asserts that every $n$-dimensional Busemann $G$-space, $n\ge 5$, is a topological $n$-manifold. This outstanding conjecture is related to (also classical) conjecture concerning the characterization of topological $n$-manifolds, the Bing-Borsuk Conjecture, which asserts that every $n$-dimensional homogeneous absolute neighborhood retract
(ANR), $n\ge 3$, is a topological $n$-manifold. We shall also discuss the latest results, examples, conjectures and open problems concerning the class of Busemann $G$-spaces.
その他