汎用データベース
筑波大学数学談話会
日時 | 2023年6月1日15時30分~17時00分 |
---|---|
場所 | オンライン |
講演者 | 伊藤 昇氏(茨城工業高等専門学校 国際創造工学科) |
講演題目 |
A quantization of the Arnold strangeness invariant |
概要 |
Arnold invariants are celebrated invariants as plane curve versions of Vassiliev knot invariants. Arnold invariants consist of three types. Two of them have been quantized by Viro (1996) and Lanzat-Polyak (2013). In this talk, we quantize the last remaining one, the Arnold strangeness invariant. As a result, we formulate a polynomial invariant expressed as an integral. The quantization is done by integrating the curvature multiplied by an appropriate density. The first term of the Taylor expansion at q=1 corresponds to the rotation number and the second term to the Arnold strangeness invariant. |