新着情報
幾何学特論I 集中講義(11月5日、8日)
科目名:幾何学特論I 01BB050 1単位
題目:「特異点と数え上げ幾何」
講師:大本亨 氏 北海道大学大学院理学研究院教授
日時:2013年11月5日(火) 10:00 ~
11月8日(金)
教室:自然系学系棟D814
講義概要:古典的な射影代数幾何における数え上げ公式(プリュッカー、サロモン、ケーリー、ツォイテンら)について、現代的な視点から整備・拡張する方法について学ぶ: 例えば、3次元射影空間内のd次代数曲面に3点で接する平面の個数、4点で接する直線の個数、放物曲線の次数などはどのように計算され、どのように一般化できるでしょうか?プリュッカー公式などの古典から始めて、代数多様体の交叉理論、写像の特異点分類および特性類に関する入門を行います。
・ホモロジーや可換環の基礎的内容を理解していることが望ましい。
・キーワード:関数・写像の特異点分類、特性類
1.古典的射影幾何 2.交叉理論と特性類
3.写像の特異点理論 4.トム多項式
5.数え上げ幾何への応用
参考文献:
1. Singularities of Differentiable Maps I/V.I.Arnold et al:Birkhauser,1985,ISBN:0-8176-3187-9
2.Characteristic Classes /J.W.Milnor,J.D.Stasheff:Princeton univ.press,1974,ISBN:0-691-08122-0
TWINS履修申請期間:10/1(火)~10/17(木)
題目:「特異点と数え上げ幾何」
講師:大本亨 氏 北海道大学大学院理学研究院教授
日時:2013年11月5日(火) 10:00 ~
11月8日(金)
教室:自然系学系棟D814
講義概要:古典的な射影代数幾何における数え上げ公式(プリュッカー、サロモン、ケーリー、ツォイテンら)について、現代的な視点から整備・拡張する方法について学ぶ: 例えば、3次元射影空間内のd次代数曲面に3点で接する平面の個数、4点で接する直線の個数、放物曲線の次数などはどのように計算され、どのように一般化できるでしょうか?プリュッカー公式などの古典から始めて、代数多様体の交叉理論、写像の特異点分類および特性類に関する入門を行います。
・ホモロジーや可換環の基礎的内容を理解していることが望ましい。
・キーワード:関数・写像の特異点分類、特性類
1.古典的射影幾何 2.交叉理論と特性類
3.写像の特異点理論 4.トム多項式
5.数え上げ幾何への応用
参考文献:
1. Singularities of Differentiable Maps I/V.I.Arnold et al:Birkhauser,1985,ISBN:0-8176-3187-9
2.Characteristic Classes /J.W.Milnor,J.D.Stasheff:Princeton univ.press,1974,ISBN:0-691-08122-0
TWINS履修申請期間:10/1(火)~10/17(木)