ブログ
筑波大学数学談話会 (1月24日)
以下のように数学談話会を開催いたします。皆様のご参加お待ちしております。
15:00 ~ 15:30 ティータイム
15:30 ~ 16:30 秋山茂樹氏 (筑波大学)
講演題:置換規則力学系の Pisot 予想 (Substitutive dynamical system and Pisot conjecture)
講演概要: 有限文字の生成するモノイドの自己準同型のことを置換規則という。置換規則により生成される無限語のシフト全体の閉包のなす空間は、シフト作用により位相力学系となる。このような力学系は、自己誘導構造を持つ最も簡単なモデルとして多くの関心を集めてきた。今回のお話では細部にこだわらず、どうしてこのような力学系が面白く、他の数学とも関連しているのかを主に例を通じて説明しようと思う。
最後にこの力学系の歴史的問題である Pisot 予想について解説したい。
16:45-17:45 Scott Carnahan (筑波大学)
講演題: Monstrous Lie Algebra
講演概要: The Monster Lie Algebra is an infinite dimensional Lie algebra with an action of the monster simple group. It played an essential role in the Monstrous Moonshine conjecture, which establishes a connection between the representation theory of themonster and the theory of modular functions on the complex upper half-plane. There is a family of similar Lie algebras, parametrized by elements of the monster, and the Monster Lie algebra corresponds to the identity.
These new Lie algebras can be used to establish cases of the Generalized Moonshine conjecture.
15:00 ~ 15:30 ティータイム
15:30 ~ 16:30 秋山茂樹氏 (筑波大学)
講演題:置換規則力学系の Pisot 予想 (Substitutive dynamical system and Pisot conjecture)
講演概要: 有限文字の生成するモノイドの自己準同型のことを置換規則という。置換規則により生成される無限語のシフト全体の閉包のなす空間は、シフト作用により位相力学系となる。このような力学系は、自己誘導構造を持つ最も簡単なモデルとして多くの関心を集めてきた。今回のお話では細部にこだわらず、どうしてこのような力学系が面白く、他の数学とも関連しているのかを主に例を通じて説明しようと思う。
最後にこの力学系の歴史的問題である Pisot 予想について解説したい。
16:45-17:45 Scott Carnahan (筑波大学)
講演題: Monstrous Lie Algebra
講演概要: The Monster Lie Algebra is an infinite dimensional Lie algebra with an action of the monster simple group. It played an essential role in the Monstrous Moonshine conjecture, which establishes a connection between the representation theory of themonster and the theory of modular functions on the complex upper half-plane. There is a family of similar Lie algebras, parametrized by elements of the monster, and the Monster Lie algebra corresponds to the identity.
These new Lie algebras can be used to establish cases of the Generalized Moonshine conjecture.