数学域談話会(数学フロンティア対象科目)
Date and time
2023/12/07(Thu) 13:45    -   2023/12/07(Thu) 15:15
Category
談話会
Location
D509
Details
12月の談話会を以下のように実施します。奮ってご参加ください。
なお、この談話会は数学フロンティアの対象科目です。
日 時 12月7日(木) 13:45 - 15:15
講演者 佐竹 郁夫氏(文教大学)
題目 Coxeter 変換から定まる良い基本不変式とフロベニウス構造
概要 G を実ベクトル空間 V0 に作用する有限鏡映群とする。V = V0 ⊗R C
を V0 の複素化とする。
射影 π : V → V/G は同型ではないが、q ∈ V を Coxeter 変換の原始
h 乗根に対する(h は Coxeter 数)固有ベクトルとしたとき、q は鏡映
面の外にあるため、π は q においては局所同型である。
これを不変式環の言葉で言い換える。C[V] の生成元として、Coxeter
変換で固有ベクトルとなるものを固定しよう。すると上記は、V/G の
座標環である C[V]Gの生成元を C[V ] の生成元を用いて q でテイラー
展開したとき、1次の係数に十分 0 でない項がある、と言い換えられる。
テイラー展開の高次の項は、C[V]Gの生成元の取り方に依存するが、
逆に高次の項ができるだけ 0 になるように生成元を選ぶことができる。
こうして得られる C[V]Gの生成元が実は V/G に入るフロベニウス
構造における平坦座標(平坦不変式)であり、このとき 0 にならない
さらに高次の係数がフロベニウス構造の積構造に対応することを紹介
する。
楕円ワイル群についての不変式でも同様の結果が得られているので、
それも紹介したい。
Created user
Created datetime
2023-09-21 15:19:49
Modified user
Modified datetime
2023-12-03 20:44:35