Blog

筑波大学数学談話会 (11月20日)

講演者: 中島 誠 氏 (筑波大学)

題目: 生物の人口模型と(確率)偏微分方程式

概要: 数学では生物の個体数の時間変動を表すものとして有名なものでは微分方程式で現れるLogistic方程式やLotka-Volterra方程式などがある. 確率論においてもGalton-Watson過程という個体数の変動のランダム性を考慮して模型がある. さらに個体に空間の動きを加えた模型を考え, そこから自然な極限として現れる確率過程は非線形熱方程式や確率偏微分方程式との関連が知られている. 今回は時空間にランダムな要素を含めた生物の人口模型を考えたとき, 関連する非線形熱方程式や確率熱方程式はどのような影響を受けるのかについて話す.