令和2年度

筑波大学大学院 数理物質科学研究科 入学試験

数学専攻 試験問題

専門科目

注意事項

- 1. 問題冊子はこの表紙を入れて8枚からなる. 試験開始の合図があるまでは問題冊子を開けないこと.
- 2. 問題は専門基礎課題が3題 ([1],[2],[3]) と専門課題が4題 ([4],[5],[6],[7]) の合計7題ある. そのうち4題選択し解答せよ. ただし,
- [4] を選択する場合には (A), (B) のいずれか一つに答えよ. 両方を選ぶことはできない.
- [5] を選択する場合には (C), (D) のいずれか一つに答えよ. 両方を選ぶことはできない.
- [7] を選択する場合には (G), (H), (I) のいずれか一つに答えよ.二つ以上を選ぶことはできない.
- 3. 答案冊子は答案用紙 4 枚からなる.それぞれの答案用紙に,研究科名・専攻名・受験番号を記入すること.解答は答案用紙 1 枚につき 1 題とし,それぞれの答案用紙の左上に解答する問題番号を記入せよ.また,[4], [5], [6], [7] では (A), (B), (C), (D), (E), (F), (G), (H), (I) の記号も記入せよ.おもて面だけで書ききれない場合には,「ウラヘ」と明記して裏面を使用してよい.
- 4. 下書用紙は4枚ある. それぞれの下書用紙に、研究科名・専攻名・受験番号を記入すること.
- 5. 問題冊子も下書用紙も回収する.

数学

注意 $\mathbb C$ は複素数全体, $\mathbb R$ は実数全体, $\mathbb Q$ は有理数全体, $\mathbb Z$ は整数全体, $\mathbb N$ は自然数全体のなす集合を, それぞれ表すものとする.

- [1] 以下の問いに答えよ.
 - $(1) \int_{1}^{2} \frac{\log x}{x} dx を求めよ.$
 - (2) $D = \{(x,y) \in \mathbb{R}^2 \mid xy \ge 1, 1 \le x^2y \le 2\}$ とする. 広義積分

$$I = \iint_D \frac{\log(x^2 y)}{1 + x^2 y^2} \, dx dy$$

を計算せよ.

[2] a, bを実数とし、 $a \neq 1$ とする. 3次正方行列

$$A = \begin{pmatrix} a & 1 & b \\ 1 & 1 & 0 \\ b & 1 & a \end{pmatrix}$$

について,以下の問いに答えよ.

- (1) A の階数 rank A を求めよ.
- (2) $a \neq b$ とする. rank A = 2 のとき, A の固有値をすべて求めよ.
- (3) $a \neq b$ かつ rank A = 2 とする. A が対角化できないとき, a と b を求めよ.
- [3] X, Y, Z を空でない集合, $f: X \to Y, g: Y \to Z, h: Z \to X$ をそれぞれ写像とする. 以下の問いに答えよ.
 - (1) 合成写像 $g \circ f: X \to Z$ が単射ならば、 $f: X \to Y$ は単射であることを示せ.
 - (2) $g \circ f: X \to Z$ が全射ならば、 $g: Y \to Z$ は全射であることを示せ.
 - (3) $h \circ g \circ f: X \to X$ と $g \circ f \circ h: Z \to Z$ が全射で、 $f \circ h \circ g: Y \to Y$ が単射ならば、 $f: X \to Y, g: Y \to Z, h: Z \to X$ はすべて全単射であることを示せ.

- [4] 次の(A),(B)のうち1つを選び解答せよ.
- (A) \mathbb{Z} を通常の加法によって群とみなす. また, 2以上の整数 n について,

$$\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$$

をnを法とする加法で群とみなす. 以下の問いに答えよ. ただし, (1), (2) は答えのみでよい. (3), (4) は理由も述べよ.

- (1) Z/8Z の部分群をすべて求めよ.
- (2) (1) で求めた部分群のそれぞれについて, その生成元をすべて求めよ.
- (3) 群準同型 $f: \mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}$ であって、像 $\operatorname{Im} f$ の元の個数が 4 個であるものはいくつあるか.
- (4) n は 2 以上の整数とする. 群準同型 $g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}$ であって, 像 $\operatorname{Im} g$ の元の個数が 2 個であるものはいくつあるか.
- (B) $\mathbb{F}_2 = \{0,1\}$ を 2 元体とし, $f(X) = X^3 + X + 1$ を \mathbb{F}_2 上の多項式とする.以下の問いに答えよ.
 - (1) f(X) は \mathbb{F}_2 上の既約多項式であることを示せ.
 - (2) 剰余体 $K = \mathbb{F}_2[X]/(f(X))$ の元をすべて記述せよ.
 - (3) K 上の多項式 $Y^3 + Y + 1$ を 1 次式の積に分解せよ.

- [5] 次の (C), (D) のうち1つを選び 解答せよ.
- (C) ℝ³ 内の曲面 *S* を

$$S = \{(x, y, x^2 - y^2) \mid (x, y) \in \mathbb{R}^2\}$$

によって定める.

- (1) $p(x,y) = (x,y,x^2 y^2)$ $((x,y) \in \mathbb{R}^2)$ は S のパラメータ表示になることを示せ.
- (2) \mathbb{R}^3 の点 (0,1,1) と点 (x,y,z) の距離の二乗

$$x^{2} + (y-1)^{2} + (z-1)^{2}$$

をSに制限した関数をfで表す.

- (a) x成分が0ではないfの臨界点をすべて求めよ.
- (b) x 成分が 0 の f の臨界点はただ一つ存在することを示せ、その臨界点の y 成分を y_0 とすると $1/4 < y_0 < 1/3$ が成り立つことを示せ、
- (3) (2)(a) で求めた f の臨界点における,S の接平面と単位法ベクトルを求めよ.
- (4) (2)(a) で求めた f の臨界点において、f が極大値・極小値をとるかどうか判定せよ.

(D)

- (1) 位相空間 X において、連結集合 A の閉包 \overline{A} も連結集合であることを示せ、
- (2) ユークリッド空間 \mathbb{R} において、連結集合Aは弧状連結であることを示せ、
- (3) $A = \{(x, \sin \frac{1}{x}) \in \mathbb{R}^2 \mid x > 0\} \cup \{(0, y) \in \mathbb{R}^2 \mid -1 \le y \le 1\}$ とする. ユークリッド空間 \mathbb{R}^2 において、A は連結であるが、弧状連結でないことを示せ.

数学

- [6] 次の(E), (F)の両方に解答せよ.
- (E) a は $2a \notin \mathbb{Z}$ を満たす複素数とする.

$$f(z) = \frac{\pi}{(z-a)^2} \frac{\cos \pi z}{\sin \pi z}$$

とする.

- (1) n を整数とするとき, z = n における f(z) の留数を求めよ.
- (2) z = a における f(z) の留数を求めよ.
- (3) 正の整数 m に対して

$$A_m = \left\{ z \in \mathbb{C} \mid |\text{Re } z| < m + \frac{1}{2}, |\text{Im } z| < m + \frac{1}{2} \right\}$$

とする. また, A_m の境界に正の向きをつけたものを C_m とする.

複素積分 $\int_C f(z) dz$ を考えることにより、等式

$$\frac{\pi^2}{\sin^2 \pi a} = \sum_{n=-\infty}^{\infty} \frac{1}{(n-a)^2}$$

を示せ. ただし, C_m の任意の点z に対して

$$\left|\frac{\cos \pi z}{\sin \pi z}\right| \le 2$$

であることを用いてよい.

(F)
$$\lim_{n \to \infty} \int_0^\infty \frac{nxe^{-x}}{2n + \sin x} \, dx$$

を求めよ.

[7] 次の(G),(H),(I)のうち1つを選び解答せよ.

(G)

S を 0 と 1 の数列 $(a_k)_{k\in\mathbb{N}}$ 全体の集合, T を 0 と 1 の有限列 $(b_k)_{k\leq l}$ $(l\in\mathbb{N})$ 全体の集合 とし, $t=(b_k)_{k\leq l}\in T$ に対して $S_t=\{(a_k)_{k\in\mathbb{N}}\in S\mid (a_k)_{k\leq l}=t\}$ とおく. 集合 $X\subset T$ は, 条件

任意の有限集合
$$Y \subset X$$
 に対して $\bigcup_{t \in Y} S_t \neq S$ (*)

を満たすとする. 以下を示せ.

- (1) $S = S_{(0)} \cup S_{(1)}$. ただし, (i) はi のみからなる長さ1の有限列である.
- (2) 次の条件 (**) を満たす $i \in \{0,1\}$ が存在する.

任意の有限集合
$$Y \subset X$$
 に対して $S_{(i)} \not\subset \bigcup_{t \in Y} S_t$. (**)

- (3) $\bigcup_{t \in X} S_t \neq S$.
- (H) 確率変数 X は累積分布関数

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & (x > 0), \\ 0 & (その他) \end{cases}$$

をもつとする. ここで, $\lambda > 0$ である. この分布から無作為標本 $X_1, ..., X_n$ $(n \ge 3)$ を抽出する.

- (1) X の積率母関数を求めよ.
- (2) $Y = \sum_{i=1}^{n} X_i$ とおく. Y の確率密度関数 $f_Y(y)$ が以下で与えられることを示せ.

$$f_Y(y) = \begin{cases} \frac{\lambda^n y^{n-1}}{(n-1)!} e^{-\lambda y} & (y > 0), \\ 0 & (その他) \end{cases}$$

(3) λの最尤推定量を求め、その平均と分散を計算せよ.

数学

(I) Rをユークリッド整域、 $d(\cdot)$ をユークリッド関数とし、 $f,g \in R, f \neq 0, g \neq 0$ とする. このとき、 $\lambda \geq 1, r_0, r_1, \ldots, r_{\lambda+1} \in R$ および $q_1, q_2, \ldots, q_{\lambda} \in R$ は次式を満たすとする:

$$r_0 = f$$
, $r_1 = g$,
 $r_{i-1} = r_i q_i + r_{i+1}$, $d(r_{i+1}) < d(r_i)$, $(i = 1, ..., \lambda - 1)$,
 $r_{\lambda-1} = r_{\lambda} q_{\lambda}$, $r_{\lambda+1} = 0$.

また, $s_0, s_1, \ldots, s_{\lambda+1} \in R$ および $t_0, t_1, \ldots, t_{\lambda+1} \in R$ を次式で定める:

$$s_0 = 1,$$
 $t_0 = 0,$ $s_1 = 0,$ $t_1 = 1,$ $s_{i+1} = s_{i-1} - s_i q_i,$ $t_{i+1} = t_{i-1} - t_i q_i,$ $(i = 1, ..., \lambda).$

さらに、 $i=1,\ldots,\lambda$ に対し、行列 T_i および Q_i を

$$T_i = \begin{pmatrix} s_i & t_i \\ s_{i+1} & t_{i+1} \end{pmatrix}, \quad Q_i = \begin{pmatrix} 0 & 1 \\ 1 & -q_i \end{pmatrix}$$

とおく. 以下の問いに答えよ. ただし, $i = 1, ..., \lambda$ とする.

(1) Rの任意のイデアルは単項イデアルであることを示せ.

$$(2)$$
 $T_i \begin{pmatrix} f \\ g \end{pmatrix} = \begin{pmatrix} r_i \\ r_{i+1} \end{pmatrix}$ が成り立つことを示せ.

- (3) $T_i = Q_i \cdots Q_1$ が成り立つことを示せ.
- (4) $\det(T_i) = (-1)^i$ が成り立つことを示せ.
- (5) $f = (-1)^i (r_i t_{i+1} r_{i+1} t_i), g = (-1)^i (-s_{i+1} r_i + s_i r_{i+1})$ が成り立つことを示せ.