平成29年度

筑波大学大学院 数理物質科学研究科 入学試験

数学専攻 試験問題

専門科目

注意事項

- 1. 問題冊子はこの表紙を入れて6枚からなる。試験開始の合図があるまでは問題冊子を開けないこと。
- 2. 問題は専門基礎課題が3題([1],[2],[3])と専門課題が4題([4],[5],[6],[7])の合計7題ある。そのうち4題選択し解答せよ。ただし,
- [4] を選択する場合には (A), (B) のいずれか一つに答えよ。両方を選ぶことはできない。
- [5] を選択する場合には (C), (D) のいずれか一つに答えよ。両方を選ぶことはできない。
- [7] を選択する場合には (G), (H), (I) のいずれか一つに答えよ。二つ以上を選ぶことはできない。
- 3. 答案冊子は答案用紙 4 枚からなる。それぞれの答案用紙に、研究科名・専攻名・受験番号を記入すること。解答は答案用紙 1 枚につき 1 題とし、それぞれの答案用紙の左上に解答する問題番号を記入せよ。また、[4], [5], [6], [7] では (A), (B), (C), (D), (E), (F), (G), (H), (I) の記号も記入せよ。おもて面だけで書ききれない場合には、「ウラへ」と明記して裏面を使用してよい。
- 4. 下書用紙は4枚ある。それぞれの下書用紙に、研究科名・専攻名・受験番号を記入すること。
- 5. 問題冊子も下書用紙も回収する。

数学

注意 $\mathbb C$ は複素数全体, $\mathbb R$ は実数全体, $\mathbb Q$ は有理数全体, $\mathbb Z$ は整数全体, $\mathbb N$ は自然数全体 をそれぞれ表すものとする.

[1] $U = \{(a,b) \in \mathbb{R}^2 \mid 0 < a < b\}$ とおく. U の点 (a,b) に対し

$$D_{a,b} = \{(x,y) \in \mathbb{R}^2 \mid x^2 - ax + y^2 \ge 0, \ x^2 - bx + y^2 \le 0, \ y \ge 0\}$$

と定め, U上の関数 f を

$$f(a,b) = \iint_{D_{a,b}} \frac{(x^2+3)y}{x^2+y^2} dxdy$$

で定義する.

- (1) $D_{a,b}$ を極座標 $x = r \cos \theta, y = r \sin \theta$ を用いて表せ.
- (2) f(a,b) を計算せよ.
- (3) U上の関数 gを

$$g(a,b) = 8f(a,b) - 5(b^2 - a^2)$$

で定義する. 関数 g のすべての極値とそれを与える点を求めよ.

[2] aを実数とする. \mathbb{R}^4 のベクトル

$$oldsymbol{u}_1 = egin{pmatrix} 1 \ 2 \ 0 \ 1 \end{pmatrix}, \quad oldsymbol{u}_2 = egin{pmatrix} a \ 0 \ 1 \ 0 \end{pmatrix}, \quad oldsymbol{u}_3 = egin{pmatrix} 1 \ 2 \ -a \ 0 \end{pmatrix}, \quad oldsymbol{u}_4 = egin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix}$$

に対し、 u_1 と u_2 が張る \mathbb{R}^4 の部分空間を W_1 とし、 u_3 と u_4 が張る \mathbb{R}^4 の部分空間を W_2 とする.

- (1) W_1 と W_2 の次元を求めよ.
- (2) $W_1 \cap W_2 = \{0\}$ となるために a が満たすべき条件を求めよ.
- (3) $W_1 \cap W_2 \neq \{0\}$ のとき, $W_1 \cap W_2$ の基底を 1 組求めよ.

数学

- [3] 集合 A の部分集合の族 $\{X_n\}_{n\in\mathbb{N}}$ と写像 $f:A\to A$ について以下を示せ.
 - (1) $f\left(\bigcap_{n\in\mathbb{N}}X_n\right)\subset\bigcap_{n\in\mathbb{N}}f(X_n)$.
 - (2) $f: A \to A$ が単射ならば, $f(\bigcap_{n \in \mathbb{N}} X_n) = \bigcap_{n \in \mathbb{N}} f(X_n)$.
 - (3) すべての $y \in A$ に対して $f^{-1}(\{y\})$ が有限集合であり、すべての $n \in \mathbb{N}$ に対して $X_{n+1} \subset X_n$ が成り立つならば、 $f(\bigcap_{n \in \mathbb{N}} X_n) = \bigcap_{n \in \mathbb{N}} f(X_n)$.
- [4] 次の(A),(B)のうち1つを選び解答せよ.
- (A) ベクトル空間 \mathbb{R}^2 の元 x, y に対して、x, y の標準内積を (x, y) で表す.

$$b_1 = \begin{pmatrix} \sqrt{3} \\ \sqrt{2} \end{pmatrix}, \quad b_2 = \begin{pmatrix} -\sqrt{2} \\ \sqrt{3} \end{pmatrix}$$

として

$$M = \{y_1 \mathbf{b}_1 + y_2 \mathbf{b}_2 \in \mathbb{R}^2 \mid y_1, y_2 \in \mathbb{Z}\}$$

とおくと、M は加法群 \mathbb{R}^2 の部分群である. さらに

$$L = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid$$
すべての $\boldsymbol{y} \in M$ に対して $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z} \}$

とする.

- (1) L は M を含む \mathbb{R}^2 の部分群であることを示せ.
- (2) L は加法群として \mathbb{Z}^2 と同型であることを示せ.
- (3) 指数 [L:M] を求めよ.
- **(B)** $R = \mathbb{Z}[x]$ を整数環 \mathbb{Z} 上の多項式環とする. 整数 a に対して $I_a = (2, x^2 + ax + 1)$ を 2 と $x^2 + ax + 1$ で生成される R のイデアルとする.
 - (1) すべての a に対して、 $I_a = I_{a+2}$ であることを示せ.
 - (2) 剰余環 R/I_a が体になるような a をすべて求めよ.
 - (3) R/I_a が $f \neq 0$, $f^2 = 0$ をみたす元 f を含むような a をすべて求めよ.

- [5] 次の (C), (D) のうち**1つを選び** 解答せよ.
- (C) \mathbb{R}^3 の元 x の標準ノルムを ||x|| で表す. C^∞ 級曲線 $c: \mathbb{R} \to \mathbb{R}^3$ が次の条件 (i), (ii) を満たすとする.
 - (i) 任意の $s \in \mathbb{R}$ に対して $\|c(s)\| = r$ である. ただし, rは正の定数である.
 - (ii) 任意の $s \in \mathbb{R}$ に対して $\|c'(s)\| = 1$ である.

 C^{∞} 級写像 $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$ を次で定める.

$$\varphi(s,t) = c(s) + e^t c'(s)$$

(1) \mathbb{R}^3 の 2 つの元 x, y の標準内積を (x, y) で表す. すべての $s \in \mathbb{R}$ に対して

$$(c(s), c'(s)) = 0, \quad (c'(s), c''(s)) = 0, \quad (c''(s), c(s)) = -1$$

が成り立つことを示し、 $r \|c''(s)\| > 1$ が成り立つことを示せ.

- (2) φ ははめ込みであることを示せ.
- (3) φ の第1基本量 E, F, G および第2基本量 L, M, N を c を用いて表し, φ のガウス 曲率 K は恒等的に 0 であることを示せ.
- **(D)** 距離空間 (X,d) の空でないコンパクトな部分集合全体のなす集合を $\mathcal{K}(X)$ とし,A, $B \in \mathcal{K}(X)$ に対し,

$$d_H(A, B) = \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right\}$$

とおく、ただし $Y\subset X$ に対し $d(x,Y)=\inf_{y\in Y}d(x,y)$ とする、また、各 $n\in\mathbb{N}$ に対し $f_n\colon X^n\to\mathcal{K}(X)$ を

$$f_n((x_1,\ldots,x_n))=\{x_1,\ldots,x_n\}$$

で定める.

- (1) d_H は $\mathcal{K}(X)$ 上の距離であることを示せ.
- (2) X^n 上の距離 d_n を

$$d_n((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \max_{i=1,\ldots,n} d(x_i,y_i)$$

で定める. このとき f_n は連続であることを示せ.

(3) $\bigcup_{n\in\mathbb{N}} f_n(X^n)$ は $\mathcal{K}(X)$ で稠密であることを示せ.

数学

- [6] 次の(E), (F)の両方に解答せよ.
- (E) 複素平面上の正則関数 $f(z) = \sin(z^3)$ を考える.
 - (1) f(z) は z = 0 で 3 位の零点を持つことを示せ.
 - (2) f(z) より定まる複素関数 $g(z)=\frac{f'(z)}{f(z)}$ は z=0 で 1 位の極を持つことを示し、その留数を求めよ。
 - (3) 領域 $D = \{z \in \mathbb{C} \mid |z| < 3\}$ 上の正則関数 h(z) は z = 1, -1 においてのみ零点を持ち、その位数はそれぞれ 2, 3 であるとする. このとき複素積分

$$\int_{|z|=2} \frac{h'(z)}{h(z)} dz$$

の値を求めよ. ただし、積分路の向きは反時計回りとする.

(F) 極限値

$$\lim_{n \to \infty} n \int_{1}^{\infty} \log x \, \sin\left(\frac{1}{nx^2}\right) dx$$

を求めよ. ただしt > 0 において成り立つ不等式 $\sin t < t$ を用いてもよい.

- [7] 次の(G),(H),(I)のうち1つを選び解答せよ.
- **(G)** 次の性質 (*) を満たす写像 $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ を考える. ただし $\mathcal{P}(\mathbb{N}) = \{X \mid X \subset \mathbb{N}\}$ である.

$$\forall X, Y[X \subset Y \subset \mathbb{N} \ \Rightarrow \ f(X) \subset f(Y)]. \tag{*}$$

さらに順序数 α に関して帰納的に、 $X_{\alpha} \subset \mathbb{N}$ を定義する:

- a $X_0 = \emptyset$;
- b $X_{\alpha+1} = f(X_{\alpha});$
- c $X_{\delta} = \bigcup_{\alpha < \delta} X_{\alpha}$ (δ は極限順序数).

このとき,以下に答えよ.

- (1) 任意O α で $X_{\alpha} \subset X_{\alpha+1}$ となることを α に関する超限帰納法で示せ.
- (2) 任意の $\alpha < \beta$ で $X_{\alpha} \subset X_{\beta}$ となることを β に関する超限帰納法で示せ.
- (3) $X_{\alpha^*} = X_{\alpha^*+1}$ となる可算順序数 α^* が存在することを示せ.

- **(H)** R をユークリッド整域とし、 $a, b \in R$ とする. $g \in R$ が a, b の最大公約元(GCD)であるとは、次の (a), (b) を満たすことである.

 - (b) $d \mid a$, $d \mid b$ なる任意の $d \in R$ について $d \mid g$ である.

次の問いに答えよ.

- (1) g, g' がともに a, b の GCD であれば、単元 u が存在して gu = g' であることを示せ.
- (2) $\mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\}$ (i は虚数単位)における単元をすべて求めよ.
- (3) $\mathbb{Z}[i]$ において、7+i と -6+8i の GCD を1つ求めよ.
- (4) (3) で求めた GCD を g として、(7+i)s + (-6+8i)t = g となるような $s,t \in \mathbb{Z}[i]$ を 1 組求めよ.
- (I) 確率変数 X は次の確率密度関数

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\sqrt{\pi \beta} x} \exp\left(-\frac{(\log x - \alpha)^2}{\beta}\right) & (x > 0), \\ 0 & (x \le 0) \end{cases}$$

をもつとし、この分布から無作為標本 $X_1,...,X_n$ $(n \ge 2)$ を抽出したとする. ただし、 α は実数、 β は正の実数とする.

- (1) 標準正規分布の累積分布関数を $\Phi(\cdot)$ とする. X の累積分布関数を $\Phi(\cdot)$ を用いて表せ.
- (2) $X_1,...,X_n$ に基づく α と β の最尤推定量をそれぞれ求めよ.
- (3) (2) で求めた α と β の最尤推定量の平均(期待値)をそれぞれ求めよ.