過去の体験学習

過去の体験学習

年度 2022年度
日付 8月4日
概要

 「平面にランダムに点をばらまけるか?」 福島 竜輝 先生

 

平面上にランダムに点をばらまきたいと思います。何となく下の図のような結果になることが想像できると思います。

しかしこれをどうやって実現するかは、意外に難しい問題です。まず領域を上の図の通りに正方形に限ったとして、「どの特定の点を見ても、そこに点が落ちる確率は 0 だから、最初の点をどこに取ってよいかわからない」、「仮に最初の点の取り方がわかって、そのあとも同じ手続きを繰り返せるとしても、いくつ点を置けばよいのかわからない」、といった問題があります。さらに無限に広がる平面に点をばらまこうと思うと、最初の点を置く場所の悩みはさらに大きくなります。仮に正方形の場合が解決したとすれ ば、平面を正方形のタイルに分割して、それぞれの中にランダムに点をばらまくという方法が考えられますが、「タイルの一辺を 1 にしたときと 2 にしたときで、同じ結果が得られるのか? 蜂の巣のように正六角形に分割してはいけないのか?」など心配の種は尽きません。

この体験学習では、上の問題について一つの自然な方法を提案し、それで上の心 配事が解決しているかを考えてみることにします。またその過程でネイピア数(またはオイラー数)と呼ばれる面白い数が自然に登場するので、ときどき脱線しながらその数に関してもいろいろな性質を調べてみたいと思います。

プログラム
8月4日(木)Zoomにてオンライン開催

9:30〜  入室可能
10:00〜10:05  開会宣言、講師・TAの紹介など
10:05〜11:30 講義と演習「平面にランダムに点をばらまけるか?」講師: 福島 竜輝
11:30〜13:30 お昼休み(各自で昼食をとって下さい。)
13:30〜15:00 講義と演習「平面にランダムに点をばらまけるか?」講師: 福島 竜輝
15:05〜15:15 学類長(佐垣先生)のお話
15:15〜15:45 アンケート集計結果発表と回答・質疑応答
15:45〜16:40頃 懇談会

年度 2019年度
日付 2019年8月9日(金)
概要

「オイラーの公式とトポロジー」    丹下 基生 先生


 平面上にいくつかの頂点を描き、その点をいくつかの交わらない辺でつないで得られる図形を描きます。下の絵はその一例です。このとき平面は幾つかの領域に分割されます。



 1750年、オイラーはゴールドバッハに宛てた手紙の中で次のように書いています。
 「上のような図形を描いて、平面をどんなふうに分割しても、頂点、辺、領域の数をそれぞれV, E, Fとしたとき、それらの間には、

$$V - E + F = 2$$


なる美しい関係がある!」
 オイラーの手紙のあと、この公式は正しいことが証明され、今ではオイラーの公式と言われています。この不思議な関係式を詳しく研究する中で、トポロジーという分野(やわらかい幾何学)が発展してきました。
 この体験学習では、まずは多面体などの例を通してオイラーの発見を追体験してもらいます。また、どうしてこの式が平面において成り立つのか、その仕組みを一緒に考えて行きたいと思います。また、体験学習の後半では、平面ではない曲面に図形を描いたとき、オイラーの公式の左辺V-E+Fの変化を観察し、右辺の2の意味に迫ります。一体どのような値に変化するでしょうか?この体験学習を通して、オイラーの発見は些細な偶然ではなく、現代まで発展してきたトポロジーの基礎となる考え方であり、文字通り、大発見であるということが分かるでしょう。


プログラム
8月9日(金)第1エリア1E303

9:30     受付開始
10:00~11:30 講義と演習  「オイラーの公式とトポロジー」 講師:丹下 基生 助教
11:30~13:30 昼食 昼休み(学食等にご案内します.昼食代を持参して下さい.)
13:30~15:00 講義と演習 「オイラーの公式とトポロジー」 講師:丹下 基生 助教
15:10~16:20 懇談会・修了セレモニー(修了証をお渡しします.)

年度 平成30年度
日付 2018年8月10日(金)
概要

「整数に関する有名な問題」 金子 元 先生

 整数は、数の中でも最も基本的なものです。特に、0以上の整数は算数において最初に学習されます。しかしながら歴史上の観点から見ると、整数は数千年もの間多くの数学者により研究され続けています。一見すると簡単な対象に見える整数について、まだわかっていないことが多いというと、驚かれるかもしれません。この体験学習では整数に関して、歴史上有名な問題を紹介したいと思います。特に、17世紀のフランスの数学者であるフェルマーが提案した問題についてテーマとして扱い、手計算を通じて整数論の考え方を学びます。
 歴史上、整数論に関して記述のある文献として、ディオファントスが書いた「算術」(3世紀に書かれたといわれています)が重要です。フェルマーはこの本を読み、独自の研究を進めました。彼は自分が得た結果に関する48個ものメモを証明なしで本の余白に書きました。この余白の中には「フェルマーの最終定理」と呼ばれる大変難しい問題もあります(問題が解かれるまでに、約360年もの年月が要されました)。フェルマーの最終定理以外の有名なメモとして、整数の平方数の和に関する問題があります。例えば、5=1×1+2×2のように、5は2つの平方数(1×1と2×2)の和で表すことができます。一方、3は二つの平方数の和で表すことができません。フェルマーは、素数について、平方数の和で表すことができるための条件を見つけました。本講演では、この条件について考察をします。
 平方数の和に関する上記の問題を解くためには、整数に関する割り算の余りが重要な役割を果たします。整数に関する割り算の余りは、小学生の時に習ったと思います。体験学習では、整数で割った余りを通じて、剰余環と呼ばれるものを紹介します。剰余環という言葉は難しそうに聞こえるかもしれませんが、本質的には整数を割った余りを記述したものです。この概念は、現代数学においても重要です。
 また、体験学習では上記以外にも様々な有名な問題を紹介したいと思います。整数は身近で扱われているにもかかわらず、未知の部分も多く、魅力的なものです。さらに整数論で学ぶ技法は、整数以外の対象への応用も持ちます。例えば、整数で割った余りについては、暗号理論など情報理論への応用があることが知られています。


プログラム
8月10日(金)第1エリア1E401
9:30     受付開始
10:00~11:30 講義と演習  「整数に関する有名な問題」  講師: 金子 元 助教
11:30~13:30 昼食 昼休み
13:30~15:00 講義と演習  「整数に関する有名な問題」  講師: 金子 元 助教
15:10~16:20 懇談会・修了セレモニー

年度 平成29年度
日付 2017年8月7日(月)
概要

「無限を数える」 竹内耕太 先生

数学の一番の基本は数を数えるということかもしれません。例えば小学校で初めて足し算をならったとき、かごの中に2つのりんご、箱の中に3つのみかんが入っている図を見て、全部で何個になるか「数えた」のではないでしょうか。
 ではもし箱の中に無限個のモノが入っていたら、それを数えるということはいったいどういうことだと考えたらいいのでしょうか?無限個のモノが2グループあったとき、どちらのほうが沢山あるか決めることは出来るのでしょうか?
 この問題は19世紀後半から20世紀初頭にかけて活躍した数学者ゲオルグ・カントールが考えた集合論と深いかかわりがあります。集合論は、数学に出てくる数や図形といったものがもつ「大きさ」「計算規則」「形」といった様々な属性を忘れて、それらを単なる点や点の集まりだと捉えてその性質を調べる理論です。例えばりんごとみかんの例では、「りんご or みかん」「箱 or かご」ということを無視して個数を数えているのです。
 有限の世界では「モノの数」は普段の日常のイメージ通りの法則に従っていますが、無限の世界を扱うようになると途端にとても不思議で面白い現象が沢山みつかります。以下のクイズを考えてみてください。

  1. 二本の実数の数直線I、Jを想像してください。Iから整数点を、Jから有理数点を取り除きます。その後、それぞれ一方から取り除いた点を他方の数直線に開いた穴に適当に一つずつはめ込みます。点を過不足無く使い、数直線I,Jが元通り復元されるようなはめ込み方を考えてください。
  2. 次のような操作を見つけてください:円周Sを二つの集合A,Bに分割し、Aから点を100万個取り除きます。点が取り除かれたA,Bを形を保ったまま適当に動かして(平行移動、回転など)組み合わせるともとの円周Sが復元されます。
  3. xy平面の原点, (1,0), (1,1), (0,1)を頂点に持つ正方形Aを考えます。Aの内部の点(a,b)でa,bがともに有理数の点は穴が開いているとします。今、一辺の長さが0.5の正方形の紙Bを考えます。はさみでBから複数の長方形(大きさは様々でよい)を順に切り出しそれらをAの上に適当に貼り、Aの穴が全部隠れて見えなくなるようにしてください。(有限個の長方形では不可能ですが・・・)

この体験学習では、ものを数えるということを一から考え直すことによって無限個の対象を扱う方法に触れ、その不思議を実感してもらいたいと思います。無限を自由に想像できるようになったときあなたの見えている世界はもっと奇妙で豊かなものになるでしょう。


プログラム
8月7日(月)総合研究棟B112
9:30     受付開始
10:00~11:30 講義と演習「無限を数える」 講師:竹内耕太 助教
11:30~13:30 昼食 昼休み(学食等にご案内します.昼食代を持参して下さい.)
13:30~15:00 講義と演習「無限を数える」 講師:竹内耕太 助教
15:10~16:20 懇談会・修了セレモニー(修了証をお渡しします.)


年度 平成28年度
日付 2016年8月12日(金)
概要

「宇宙の形と結び目の不思議」 石井 敦  先生

事前掲載概要:
 結び目理論とよばれる数学の理論があります。出かける前に靴ひもを結んだり、イヤホンのひもを結んで保管したり、ダンボールや新聞を縛って古紙回収に出したり、日常では様々な場面で結び目が現れます。

そんな日常にあふれた結び目は、数学で研究されています。これまでに学んできた数学からは、結び目がどうして数学と関係するのか、想像できないかもしれません。
一見、複雑に見える結び目でも、ほどけていることがあります。(ひもの両端を強く引っ張ると、ほどける結び目を作ったことはありませんか?)止め結びは、ひもで輪を作り、その輪の中にひもの片端を通すことで得られる結び目です。文章で書くと難しく感じますが、みなさん一度は作ったことがある簡単な結び目です。止め結びは、ひもの両端をどんなに強く引っ張ってもほどけません。
二つの結び目が与えられたとき、その二つの結び目が同じ結び目かどうか、どうやって判定したらいいでしょう?
ほどこうと1時間頑張って、ほどけなかったからと言って、本当にほどけない結び目でしょうか?もしかしたら、もう1時間頑張ったら、ほどけるかもしれません。でも本当に、ほどけない結び目だったら何時間頑張ってもほどけません。
数学では、結び目を理論的に扱うことができ、この無限に時間の掛かってしまう問題を回避することができます。結び目理論では代数、幾何、解析、何でも使います。様々な切り口からの研究が結び目理論を豊かにしています。
結ぶという現象のあるところ、結び目理論があります。
宇宙の形が結び目によって表されるということは驚きでしょうか?最近は、DNAやたんぱく質の性質と結び目との関係が研究されています。作用素環論という全く別の理論から結び目の不変量を構成したジョーンズはフィールズ賞を受賞しました。
今回の体験学習では、結び目理論の初歩に触れることで、高校までの数学からは想像の難しい、受験数学から解き放たれた自由な数学を体験することができればと思います。
プログラム
9:30 受付開始
10:00~11:30 講義と演習
11:30~13:00 昼食・昼休み (班ごとにお弁当を食べました。)
13:00~14:30  講義と演習
14:40~15:50 懇談会・修了セレモニー(修了証をお渡ししました。)
16:00~17:00 筑波大学中央図書館見学・学内散策
 
体験学習当日の様子: 参加者達はまず受付で一本の紐と,結び目の絵が描かれた紙を配布され,同じ結び目が描かれている席を自分で探すところから始まりました. 今回の体験授業の内容は結び目理論の入門講義です.数学でいう結び目とは,一本の紐を絡ませて両端をつなげたもので,ぐねぐねと変形させて同じ形になるものは全て同じ結び目とみなします. 

午前中の内容は配布された紐を指定された形に変形してみたり,絵を描いて考えたりと,実際に手を動かして考える課題が与えられました.生徒達は中学校や高校では習わない「トポロジー」の考え方に苦戦しながらも,グループで相談して問題を解こうと奮闘していました.

午後は多項式不変量を用いて結び目を区別する内容に入りました.ある2つの結び目が同じ結び目であることを示すには実際に変形できることを確かめればいいわけですが,異なる結び目で あることを示すには,「いくら頑張っても変形できない」というだけでは不十分です.そこで今回は結び目をあるルールに従って多項式で表し,その多項式を比べることで異なる結び目かどうかを判定しました.見たこともない数式に最初は皆さん面食らっている様子でしたが,TAの方を含め,周りと相談して取り組むことで解決できていました.

普段学校で習うような数学とは一味違う数学に触れ,数学とはいかに自由で楽しいものなのかを実感できる体験学習だったのではないかと思います.

 

年度 平成27年度
日付 2015年8月7日
概要
「図形の合同についての再考」  相山玲子 先生


高校生の皆さんは,小学校・中学校の算数・数学において,合同な図形の定義や性質を学んできていることと思います。2つの「図形」が『合同』であるとは,一方の図形を「移動」させて他方に重ね合わせることができる場合でした。この「平面図形」の『合同』の定義において,「移動」とは「平行移動」「回転移動」「対称移動」およびその組み合わせで「平面図形」を動かすことでした。では,なぜこの3つの「移動」を考えればよいのでしょうか?

1つの答えとしては, ”「長さ」を変えない動かし方”はこの3種類で表せるという理由が挙げられます。皆さんがこれまでに勉強してきた「図形」の話は,ほぼ,”「長さ」を変えない動かし方で重ね合わせられる「図形」は同じもの(『合同』)であるとする「幾何学」”です。”いくつもの図形の中から『合同』なものを選びなさい” という問題は, ”『合同』な図形は同じ仲間として, 与えられた図形を分類しなさい”という「幾何学」の問題だということができます。

しかし,実は「幾何学」は対象とする「図形」や「移動」のルールを変えることによって色々な種類があるのです!例えば,「平面図形」の「移動」を,先の3つの操作に「縮小拡大」をつけ加えたものとすると,前述の『合同』の定義は『相似』の定義だと読みかえることができ,”『相似』な図形は同じ仲間とする「幾何学」”が考えられることになります。(ここまでは,ユークリッド幾何とよばれる最も古典的な幾何学です。)

今回の体験学習では,「図形」を「(平面内の)点の集合」として考え,「移動」のルールを拡張あるいは変更して得られる「幾何学」(非ユークリッド幾何,位相幾何・・・) も紹介して,その変更された「移動」の操作も体験してもらいながら,「幾何学」の雰囲気を感じてもらいたいと思います。

   

   



昼休みの座談会
「カレーを片手に集って”微積分学成立前夜の微積分学”について語る。」
座談会講師: 西村 泰一 講師

昨年度の体験学習で皆さんに講義をした西村が17,18 世紀の微積分学と19 世紀以降の微積分学(高校の教科書は19 世紀以降のやり方に依拠して書かれています)の違いについてお話しします。また、参加される皆様には ”微積分学序説 - 数学に悟りをもとめて- ”という冊子を無料で差し上げます。
年度 平成26年度
日付 2014年8月7日
概要 「黄金期の微積分学」 講師:西村泰一 先生

微積分学の基礎を築いたのはニュートンですが、彼は17世紀の人物です。18世紀にはラグランジュやオイラーを始め、名だたる数学者がいます。17世紀や18世紀の微積分学は冪零無限小を用いて展開されていました。冪零無限小というのは何回か掛け合わせると0になってしまうような小さい実数です。何回か掛け合わせて0になるなら、もともとその数は0ではないかと思うかもしれませんが、こんな数が0以外にも一杯あるような世界で微積分学を楽しんでいたのです。喩えていうと、河童みたいなものですね。昔はどこの沼や川に行っても、河童は必ず見ることができたのですが、最近は河童の目撃談はあまり聞きませんね。どうも死に絶えてしまったようです。環境の変化についていけなかったのかもしれません。

19世紀になると、冪零無限小はいい加減という烙印を押されて追放され、かわって微積分学は極限を用いて展開されることになります。高校の教科書には極限の単元があり、その後に微分や積分の 単元がきますが、これはそうした19世紀の動きを踏まえてのものです。大学で数学を専攻すると、さらに悪名高いεーδでそれに箔をつけます。オイラーというのは、きわめて多産な数学者ですが、”彼がもしも εーδで論文を書かなければいけなかったとしたら、あんなに沢山の論文を書くことは、とてもできなかったであろう”とは、よく言われる話しです。

この講義では冪零無限小を用いた微積分学を楽しんでもらいます。それがいかに躍動感に満ちたものか、堪能してください。

      

      

      

      
年度 平成25年度
日付 平成25年8月9日
概要 『フェルマー予想の話』 木村健一郎 先生


フランスの数学者フェルマー(1601-1665)は、自分の持っていた本(ディオファントスの「数論」)の余白に次のような意味のことを書きました。

nが3以上のとき、$$x^n+y^n=z^n$$をみたす自然数$$x, y, z$$は存在しない」

また「私はこのことの真に驚嘆すべき証明を発見したが、この余白はそれを書くには狭すぎる」とも書いています。$$x^2+y^2=z^2$$をみたす自然数$$x,y,z$$は無数にあるのに、$$n$$が3になったとたんに一つも無くなってしまうのです。フェルマーは彼の「証明」を書き残しませんでした。そのためこの主張はフェルマー予想と呼ばれます。その後300年以上にわたりこれを証明しようと多くの試みがなされましたが、誰も成功しませんでした。しかしその努力が数学の進歩のきっかけとなったこともあります(クンマーなど)。

最終的に証明を与えたのは、アンドリュー・ワイルスで、1994年のことです。しかし彼は直接証明したわけではありません。実はその何年か前に、フライとリベットという人たちが、「谷山-志村予想」という予想が正しければフェルマー予想が正しいことを示しました。谷山-志村予想は、一言でいうと「有理数体上の楕円曲線はモジュラーである」というものです。ワイルスはテイラーという人の協力を得て、谷山-志村予想(の重要な場合)の証明に成功したのです。谷山-志村予想(ワイルスの定理)は、20世紀の数学が達した一つの頂点と言えるものです。この講義では、その内容の不思議さを、実例の計算を通して感じてもらいたいと思います。ワイルスの仕事は、20世紀の初めに高木貞治が証明した「類体論」をさらに進めた「非可換類体論」への一歩を踏み出したものと言えます。類体論についても具体例を計算してもらい、その雰囲気を感じてみたいと思います。

  

  

年度 平成24年度
日付 平成24年8月2日
概要
『面積を数えよう』
竹山 美宏 先生

私たちは, 小学校の算数で長方形や三角形, 平行四辺形などの面積の公式を学びました. どの公式も, 辺の長さや高さを足したり掛けたり2で割ったりするものですから, 面積を計算するためには(長さを)『測る』という操作が必要なはずです. ところが, ある世界では面積を『数えて』計算することができます.

舞台となるのは下の図のように点が等間隔に並んだ世界です. この点を頂点とする多角形を考えます.
 

点の間隔を1としましょう. すると, 左の三角形の底辺の長さは3, 高さは2ですから, 面積は3 \times 2 \times \frac{1}{2} = 3です. 右の四角形は正方形で, 一辺の長さは$$\sqrt{5}$$ですから, 面積は $$\sqrt{5} \times \sqrt{5}=5$$です. では, 下の多角形の面積はいくつでしょうか?

このように複雑な場合は, 普通に面積を計算すると大変です. 実は, 上の多角形の面積は次の式で求められます. 

3+¥frac{1}{2}¥times 13-1=¥frac{17}{2} 

この計算では, あるものを『数えて』面積を求めているのですが・・・. 

今回の体験学習では, 上の問題を通じて, 参加者のみなさんと一緒に数学の研究を疑似体験してみようと思います.      


   

  

   

年度 平成5年度
日付 平成6年3月21日(月)~22日(火)
概要


[代数] 『方程式とガロアの理論』
木村達雄


[解析] 『作用素の指数関数』
村松壽延


[情報] 『集合論帝国主義』
本橋信義


[幾何] 『微積分と等周問題』
高橋恒郎



 

 

平成6年3月21日(月)

 9:30-- 9:50 受付

10:00--10:20 江崎玲於奈学長特別講話『トンネルへの長い旅路』

10:30--12:00講義『方程式とガロアの理論』木村達雄

12:00--12:40 昼食

12:40--14:10 学内施設見学

14:10--15:40講義『作用素の指数関数』村松壽延

15:40--17:00 受講生・教官による談話会


3月22日(火)

 8:30-- 8:50 受付

 9:00--10:30講義『集合論帝国主義』本橋信義

10:30--12:00講義『微積分と等周問題』高橋恒郎

12:00--13:00 昼食

13:00--14:30 本学学生による学生生活体験談

14:30--16:00 まとめ

年度 平成6年度
日付 平成7年3月20日(月)~21日(火)
概要


[代数] 『方程式の解法と群(代数学入門)』
森田 純


[幾何] 『曲面とその曲率』
伊藤光弘


[解析] 『円周率πの計算』
若林誠一郎


[情報] 『コンピュータは因数分解をどう行うのか?』
佐々木建昭




平成7年3月20日(月)

 9:30-- 9:50 受付

10:00--10:30 木村達雄 教授『数学雑談』

10:30--12:00講義『方程式の解法と群(代数学入門)』森田 純

12:00--13:00 昼食

13:00--14:00 学内施設見学

14:00--15:30講義『曲面とその曲率』伊藤光弘

15:30--17:00 受講生・教官による談話会


3月21日(火)

 8:30-- 8:50 受付

 9:00-- 9:30 学長特別講話

 9:30--11:00講義『円周率πの計算』若林誠一郎

11:00--12:30講義『コンピュータは因数分解をどう行うのか?』佐々木建昭

12:30--13:10 昼食

13:10--14:40 本学学生による学生生活体験談

14:40--16:00 まとめ

年度 平成7年度
日付 平成8年3月19日(火)~20日(水)
概要


[代数] 『結び目と多項式』
竹内光弘


[幾何] 『柔らかい幾何(トポロジー)学入門』
加藤久男


[解析] 『確率で考える,確率を考える』
神田護


[情報] 『それってトウケイ?』
狩野 裕





平成8年3月19日(火)

 9:30-- 9:50 受付

10:00--10:30 学長特別講話

10:30--12:00 講義『結び目と多項式』竹内光弘

12:00--13:00 昼食

13:00--14:00 学内施設見学

14:00--15:30 講義『柔らかい幾何学(トポロジー)入門』加藤久男

15:30--17:00 受講生・教官による談話会


3月20日(水)

8:30-- 8:50 受付

9:00--10:30 講義『確率で考える,確率を考える』神田 護

10:30--12:00 講義『それってトウケイ?』狩野 裕

12:00--13:00 昼食

13:00--14:40 本学学生による学生生活体験談

14:40--16:00 まとめ

年度 平成8年度
日付 平成9年3月19日(水)~20日(木)
概要 [代数] 『リー代数入門(微分とその仲間達)』
宮本雅彦


[幾何] 『大きな面積を効率よく囲む方法---等周不等式---』
田崎博之


[解析] 『初等超越関数の世界』
渡邊公夫


[情報] 『集合論帝国主義』
本橋信義





平成9年3月19日(木)

 9:30--10:00 受付

10:00--10:30 学長特別講話

10:30--12:00 講義『リー代数入門(微分とその仲間達)』宮本雅彦

12:00--12:50 昼食

12:50--14:00 学類紹介ビデオ鑑賞

14:00--15:30 講義『大きな面積を効率よく囲む方法---等周不等式---』田崎博之

15:30--17:00 本学学生による学生生活体験談

3月20日(金)

9:00--10:30 講義『初等超越関数の世界』渡邊公夫

10:30--12:00 講義『集合論帝国主義』本橋信義

12:00--13:00 昼食

13:00--14:30 演習

14:30--16:00 教官・大学生との懇談会

年度 平成9年度
日付 平成10年3月19日(木)~20日(金)
概要

[代数] 『分割数とその周辺』
内藤 聡


[幾何] 『トポロッジーの世界』
酒井克郎


[解析] 『微積分学入門』
南 就将


[情報] 『鶴亀算のかなた(グレブナー基底理論入門)』
坂井 公

 

 





平成10年3月19日(木)

 9:30-- 9:50 受付

 9:50--10:00 事務連絡

10:00--10:15 自然学類長挨拶

10:30--12:00講義『分割数とその周辺』内藤 聡

12:00--12:50 昼食

13:00--14:00 学類紹介ビデオ鑑賞

14:00--15:30講義『トポロジーの世界』酒井克郎

15:30--17:00 本学学生による学生生活体験談


3月20日(金)

 9:00--10:30講義『微積分学入門』南 就将

10:30--12:00講義『鶴亀算のかなた(グレブナー基底理論入門)』坂井 公

12:00--12:50 昼食

13:00--14:30 演習

14:30--16:00 教官・大学生との懇談会+体験学習の感想文

年度 平成10年度
日付 平成11年3月19日(金)~20日(土)
概要

[代数] 『何通り?群を使えばこの通り』
増岡 彰

電車が通れば何両編成か数える.モーニング娘がTVに映れば何人組か数える.---数を数えるのは,人間の本能なのかもしれません.8つのリンゴを3人に配る方法,7人が手をつないで輪を作るときの並び方など,ある事象が何通り起こるか数える問題を「数え上げの問題」といいます.この種の問題を代数学の手法を用いて有効に解くことで,皆さんを我々の根城にお誘いします.


[幾何] 『双曲幾何へのいざない』
伊藤光弘

その昔,大きな3角形を作って内角の和を測った人がいた.かの有名なガウスである.同じ頃,内角の和が2直角でない幾何があるかもしれないと考えた人たちもいた.彼らの発見した幾何は,現在,双曲幾何と言われているが,上半平面モデルを用いて,このチョット奇妙な双曲幾何を体験してみよう.


[情報]『統計学は未来を予測できるか?』
赤平昌文

最近の世の中の状況をみると,従来のシステムが壊れはじめ,例えば,銀行,証券会社などの金融破綻を含め,混沌として先が見えない時代に入っている.このような時代に,統計学は有効であろうか.「統計学」のような学問は,データが持つ情報を如何にうまく引き出すかを考慮する学問であるが,得られている現在のデータに基づいて未来を予測することも考えられる.ここでは,統計的予測問題に焦点を当てて,予測法について考察し,実際問題への応用として,日本のプロ野球チームの勝数や米国大リーグ選手のホームラン数を予測してみよう.


[解析] 『フーリエ級数と無限級数』
筧 知之

フーリエ級数というのは,sin x,sin 2x,sin 3x,...とか,cos x,cos 2x, cos 3x,...という三角関数達の和(無限和)の形に表された級数のことです.このフーリエ級数を用いると,





などのような,面白い無限級数を比較的簡単に導くことが出来るのです. ここでは,フーリエ級数の持つ魅力を紹介します.

 

 





平成11年3月19日(金)

 9:30-- 9:50 受付
 
 9:50--10:00 事務連絡

10:00--10:15 学類長挨拶

10:30--12:00講義『何通り?群を使えばこの通り』増岡 彰

12:00--13:00 昼食

13:00--14:30講義『双曲幾何へのいざない』伊藤光弘

14:30--15:30 筑波大学における学生生活体験談

15:30--17:00講義『統計学は未来を予測できるか?』赤平昌文

3月20日(土)

 9:30--11:00講義『フーリエ級数と無限級数』筧 知之

11:00--12:00 筑波大学における数学のカリキュラム

12:00--13:00 昼食

13:00--15:45 演習および懇談会(学内施設見学等)

15:45--16:00 まとめ

年度 平成11年度
日付 平成12年3月20日(月)~21日(火)
概要

[代数] 『ベクトル空間のお話』
加藤豊紀

諸君は“ベクトル”について既に学んでいることでしょう。しかし、“ベクトル空間”という言葉にはおそらく初耳の方も多いのではないかと思います。ここでは“ベクトルの全体”を“空間”として捉えられることを 学びます。先ず、ベクトル空間の定義と例から始め、“ベクトルの一次独立性”、“空間の生成系”と“空間の次元”についてお話します。


[幾何] 『結び目理論入門』
川村一宏


伸び縮みが自由にできる一本の紐を適当に結んで、両端を閉じたものを結び目といいます。 結び目はごく身近なありふれたものですが、これを扱う数学はとても豊かな内容をもっています。 今回は皆さんを、結び目理論の入口まで御案内します。


[解析] 『微分方程式とケプラーの法則』
土居伸一


太陽のまわりの惑星の運動に関してケプラーは次の3つの法則を発見した。(第1法則)惑星の軌道は太陽を焦点とする楕円である。(第2法則)太陽と惑星を結ぶ線分が単位時間に通過する面積は一定である。(第3法則)惑星の楕円運動について公転周期の2乗は長軸の3乗に比例する。 一方ニュートンによると、太陽と惑星の間には、その距離の2乗に反比例し、その2つの質量の積に比例する引力が互いに働いている(万有引力の法則)。この講義では、万有引力の法則を仮定し、惑星と太陽に対するニュートンの運動方程式からケプラーの法則を導くことを目標としている。 ニュートンの運動方程式は微分方程式の代表例であり、その解析を通して微分方程式、さらには解析学の面白さを伝えたい。


[情報] 『数学的帰納法の原理』
本橋信義

この世の中に本当に正しいものがあるのだろうか、と疑ったことが ありませんか。デカルトという哲学者は、すべてを疑った末に、疑っている自分自身(という知性)の存在は疑い得ないと悟り、この悟りを最初の拠り所に一つの知の体系を作りました。「我思う、ゆえに我あり。」という彼の言葉がこの状況を端的に説明してます。では、数学という学問体系は本当に正しいのでしょうか。デカルトが知的活動としての学問全体に対して行った作業を、数学という特殊な学問に対して行ったとき、何が得られるでしょうか。数学のさまざまの原理を疑っていったときに、最後に残るものとして、私は数学的帰納法の原理を挙げたいと思います。数学的帰納法の原理は、現代数学の基本原理の一つです。ところが、残念なことに、高校数学では、この重要な数学的帰納法が、選択科目の「数学A」の数列のところで簡単に取り扱われているだけです。本講義では、まず、具体的な高校数学の教科書を取り上げます。そして、その教科書の中の数学的帰納法の記述に関する問題点を取り出します。次に、幾つかの言葉上の準備をした上で、問題点の解説をいたします。その過程で、数学的帰納法の原理が旨く説明できればと思います。さらに、皆さんが日常使われいる教科書にも、言葉の上での問題が いろいろあることに気付いていただけたらと思います。





平成12年3月20日(月)

 9:30-- 9:50 受付

 9:50--10:00 事務連絡

10:00--10:15 学類長挨拶 佐々木 建昭 学類長

10:30--12:00講義『結び目理論入門』 川村 一宏

12:00--13:00 昼食

13:00--14:30講義『ベクトル空間のお話』 加藤 豊紀

14:30--15:30 筑波大学における学生生活体験談 本学学生

15:30--17:00講義『数学的帰納法の原理』 本橋 信義

3月21日(火)

 9:30--11:00講義『微分方程式とケプラーの法則』 土居 伸一

11:00--12:00 筑波大学数学系の紹介 筧 知之

12:00--13:00 昼食

13:00--15:45 演習および懇談会(学内施設見学等)

15:45--16:00 まとめ 

年度 平成12年度
日付 平成13年3月19日(月)~20日(火)
概要

[代数] 『円周率を巡る御伽噺』
増田哲也

円周率とは何ですか。よく知られているようで、実は、円周率をきちんと理解している人は少ないようです。実際、新しい指導要領では円周率は3としてよいことになる そうですから。そうするといろいろ不都合が生じるはずですが、どんな不都合が生じるかわかりますか。一方で、円周率は3でなく、3.14 だと信じている人がいます。さらに、円周率は 22/7 だと信じている人も世の中にはいます。子供がそう思って いるならいいのですが、いい大人でも、そう信じている人が案外いるのです。そこで、円周率の本当の姿をお見せしようと思います。ついでに、円周率にまつわる 様々な御伽噺ができればと思います。




 

[幾何] 『曲線の幾何学』
長友康行

高速道路などを走っていて、「R=50m」などという標識をコーナーで見た経験はないでしょうか? あれは何を知らせているのでしょう? この講義ではこのコーナーの「曲がり具合」を物理的体験をもとに数値化してみます。さらに、この数値化された「曲がり具合」が道路の形自体を決定してしまうということを解説します。「F1」を観戦する楽しみを増やしましょう。


 

[解析] 『「つむじ」の数を数えてみよう』
竹内 潔

気象衛星「ひまわり」などから撮った地球の写真を見ると必ずどこかに渦を巻いている地点(無風点)があるはずです。しかも不思議なことに無風点のまわりでの風向きの回転数を足すと必ず2という数になります。実はこの2という数は、地球すなわち2次元球面のオイラー数と呼ばれているものなのです。この講義ではトポロジー(位相幾何学)の入門と曲面上のベクトル場について解説します。ほとんどすべては絵を描いていくだけで証明出来てしまいます。高校の数学とは一風違った、大学の数学の自由さ、面白さが伝えられたらと思っています。



[情報] 『切ったり貼ったり-デーンの定理とその周辺-』
坂井 公

「平行四辺形の面積は底辺×高さ」、「三角形の面積は底辺×高さ÷2」,小学校で習うこれらの事実にあまり疑いを持った人はいないでしょう。なぜなら平行四辺形は,傾いて出っ張っている部分を切り取り,反対側に移動すると簡単に長方形に整形できるからです.また,三角形は,同じ形のものを2つ持ってくると,同じ底辺と高さを持つ平行四辺形が作れます。同じように「角柱の体積は底面積×高さ」というのも納得できるでしょう。でも、「円の面積は円周率×半径の2乗」、「球の体積は円周率×半径の3乗×4/3」、「角錐の体積は底面積×高さ÷3」はどうでしょう? これらの説明には、普通,積分の考え方を使いますが、もっとすっきりした説明はできないのでしょうか? 円や球はともかくとして,角錐はいくつか集めてきて切ったり貼ったりしたら納得のいく形に変形できないのでしょうか? 今からほぼ100年前、19世紀最後の年にデーンという数学者がこの問題に答えを出しました。こういう問題に数学者がどういうふうに取り組むかをなるべく予備知識を仮定せずにお話します。

 





平成13年3月19日(月)

 9:30-- 9:50 受付

 9:50--10:00 事務連絡

10:00--10:15 学類長挨拶 佐々木 建昭 学類長

10:30--12:00講義『円周率を巡る御伽噺』 増田 哲也

12:00--13:00 昼食

13:00--14:00 学内施設見学

14:00--15:30講義『曲線の幾何学』 長友 康行

15:30--17:00 質問に答える時間 本橋 信義 他

3月20日(火)

 9:00--10:30講義『「つむじ」の数を数えてみよう』 竹内 潔

10:30--12:00講義「切ったり貼ったり-デーンの定理とその周辺-」 坂井 公

12:00--13:00 昼食

13:00--14:30 学生との懇談会 涌井英幸、小島紫津香他

14:30--16:00 まとめ 

年度 平成13年度
日付 平成13年7月28日(土)~29日(日)
概要

[代数] 『定規とコンパスによる作図』
藤田尚昌


定規とコンパスを使って「角の2等分線」をどうやって引くか、皆さんは中学生のとき習ったと思います。しかし、“定規とコンパスを使って「角の3等分線」をどうやって引くか?”という問題は、古代ギリシャ以来の難問の一つとして知られていましたが、1837年Wantzelという人によって「角の3等分線は引けない」ことが証明されました。大学では、3年次の代数学の講義で、体論を学びます。この作図不可能性の証明は、体論の1つの応用として簡単に与えられます。ここでは、その証明を平易に解説し、体論の一端に触れたいと思います。



[幾何] 『楽しい結び目・絡み目の数学』
金戸武司


日常生活でも身近に見られる結び目・絡み目現象は数学的対象としても興味深く、様々な研究が行われてきた。数学では閉じたものを考える。即ち、空間内の(太さのない)閉じたひも(=単純閉曲線)を結び目、何本かの結び目の集まりを絡み目といい、結び目は絡み目の一種とみなす。2つの絡み目について、一方を(曲げたり、伸ばしたり、縮めたり)自由に空間内で動かして他方に重ね合せられるとき、結び方・絡み方は本質的に同じとみなし、2つの絡み目は同値であるという。2つの異なる絡み目の区別には、同値な絡み目に対して変わらない量(=絡み目不変量)が有効である。その例として、Conway 多項式と Jones 多項式を取り上げ、計算法と後者の簡単な別証を紹介し、また、結び目をひもで作り、手品風変形を楽しむ。



[解析] 『応用数学における微分方程式入門』
山崎 満

現代、応用する立場の人々から見た数学を捉えてみましょう。その1例として、ここでは微分方程式を取り上げますが、予備知識としては、簡単な多項式の微分がわかれば十分です。そのなかでも、指数関数の別の定義の仕方を導出することによって、指数関数の性質を別な方法で導き出すことができます。この別な方法は、高校で習う方法よりも、ときとしてスッキリした形で表わされることがありますので、そのいくつかを見てみましょう。また、今までは数の指数関数、つまり、1次元ベクトル(スカラー)の指数関数を見て来ました。現代数学では、この概念を拡張して、n次元ベクトルの指数関数や無限次元の指数関数さらに非線形の指数関数が定義されます。こうした新しい数学が、間接的に天気予報や航空機の設計に役立っております。



[情報] 『いくつかのものを統計的に比較してみよう』
青嶋 誠

皆さんは学校で「統計」を勉強しているかも知れませんね。高校までの範囲では、正規分布の母平均に対する信頼区間を作ることが、ゴールになっています。よく読むと、母平均の信頼区間を作るために、どうやら、母分散の値は分かっていることを仮定しています。母分散の値が分からない場合、信頼区間はどうやって作ったらよいのでしょうか?また、2つの母平均の差に対して信頼区間を作りたい場合、どうしたらよいのでしょう?2クラスのデキを平均点で比較する場合が、これに当たります。3つ以上の母平均を、それぞれ対にして比較したい場合は、どうすればよいのでしょう?単純に2つの母平均の差の信頼区間を繰り返して作ればよいのでしょうか?この辺の議論に、数学が使われるのです。





平成13年7月28日(土)

 9:30-- 9:50 受付

 9:50--10:00 事務連絡

10:00--10:15 学類長挨拶 斎藤 功 学類長

10:30--12:00講義『定規とコンパスによる作図』 藤田 尚昌

12:00--13:00 昼食

13:00--14:00 学内施設見学

14:00--15:30講義『楽しい結び目・絡み目の数学』 金戸 武司

15:30--17:00 質問に答える時間 本橋 信義 他


7月29日(日)

 9:00--10:30講義『応用数学における微分方程式入門』 山崎 満

10:30--12:00講義『いくつかのものを統計的に比較してみよう』 青嶋 誠

12:00--13:00 昼食

13:00--14:30 学生との懇談会 涌井英幸、小島紫津香他

14:30--16:00 まとめ(各先生の部屋で) 

年度 平成14年度
日付 平成14年7月27日(土)~28日(日)
概要


『多変数関数の微分と積分』
南 就将 先生

ある範囲を動く数 x に別の数 y を対応させる規則あるいは「しかけ」を「関数」といいます。高校では2次関数、三角関数、指数関数、対数関数などを学びます。一方、2つの数の組 (x,y) に別の数 z を対応させる関数(多変数関数)も当然考えられます。地図上の一点(それは緯度 x と経度 y との組 (x,y) で表される)にその地点の標高 z を対応させる関数などを考えれば、多変数の関数が科学のあらゆる局面で不可欠であることが容易に理解されるでしょう。と同時に多変数の関数に対する微分、積分はどのように考えればよいかという問題が生じます。この講義では、大学の微積分で本格的に学ぶ偏微分と重積分の初歩を解説しながら、多変数の関数に対する想像力を養っていただこうと思っています。


『曲がった空間―曲率は全てを語る』
山口 孝男 先生

曲線や曲面、そしてより高次元の“曲面”を総称して空間と呼びます。空間の曲がり具合を表す曲率という概念を定めて、曲がった空間を考察することは重要な空間認識の方法を与えます。曲率を通していろいろな空間を理解できる、という話しです。例えば、遊園地で 回転する乗物に乗っているときに、目を閉じていても何回まわったか理解できます。また、万一あなたが誘拐されて眼隠しされて車でどこかに連れて行かれたとしても、最終地点を理解できます(勿論そのようなことの無いよう十分気をつけましょう)。数学的には、これらは全て、曲線の曲がり具合を表す曲率といもので説明することが出来ます。そう、曲率は全てを語るのです。



『非可換の世界を覗いてみよう』
星野 光男 先生

あまり意識したことはないと思いますが、我々が扱っている数(実数または複素数)というのは「掛け算の順序が交換可能である」という著しい性質を持っています。つまり、我々は可換の世界で暮らしているわけです。従って、非可換の世界(即ち、掛け算の順序が交換可能でない様な数を基にした世界)においては、我々の常識が必ずしも通用しないという事態が起こり得ます。実際、可換から遠く離れた世界では、ちょっと想像出来ない様な現象が起こります。ここでは、非可換の世界をほんのちょっとだけ覗いてみることにします。




『民主主義国家構築のために』
坪井 明人 先生

議員の集合を I とし、I のべき集合( I の部分集合全体)の部分集合 F を一つ定めます。 F に属する A を多数派とよびましょう。さらに、A または A の補集合のいずれかは多数派になり、両方が多数派にはならないなどいくつかの条件をおきます。

(*)法案1の賛成者は多数派なので可決され、法案2も可決されました。
よって、両法案に賛成の人が多数派です。

上の議論は正しいですか?正しくないと思う人が多数派でしょう。しかし「多数」という語感から離れますが、上の議論を正しくする「多数」があります。それは、独裁者が賛成することを「多数」と定義する時です。I が有限の場合は(*)を成立させるにはどうしても独裁者が必要です。しかし、I が無限ならば独裁者のいない国家が存在します。皆で民主主義を守ろう。





 平成14年7月27日(土)

 9:30-- 9:50 受付

 9:50--10:00 事務連絡

10:00--10:15 学類長挨拶 斎藤 功 学類長

10:30--12:00講義『多変数関数の微分と積分』 南 就将

12:00--13:00 昼食

13:00--14:00 学内施設見学

14:00--15:30講義『曲がった空間―曲率は全てを語る』 山口 孝男

15:30--17:00 質問に答える時間 藤田 尚昌 他

7月28日(日)

 9:00--10:30講義『非可換の世界を覗いてみよう』 星野 光男

10:30--12:00講義『民主主義国家構築のために』 坪井 明人

12:00--13:00 昼食

13:00--14:30 学生との懇談会

14:30--16:00 まとめ(各先生の部屋で)



 

年度 平成15年度
日付 平成15年8月8日(金)
概要

『素数は数えられそうか』
三河 寛 先生


素因数分解という言葉を聞いたのは中学生の頃だったでしょうか。経験的に各々の自然数は素数の積として表せ、この表示はひとつに決まります。つまり素数は積に関して自然数のベースになっていると考えられます。さて自然数は無限個ありますがそのベースとなっている素数は無限個あるでしょうか、それとも有限個なのでしょうか。紀元前に著されたユークリッド「原論」には素数が無限に存在することの証明が書かれているとか。そこで「指を折って数を数える」ように素数を数えていけるのかを考えてみましょう。 x を大きな正の実数とすると x 以下の自然数の個数は x と高々1しか違わないので、これはほぼ x であるといえます。では x 以下の素数の個数は x の関数としてどれくらいの大きさなのでしょう。いったいそんなことが分かるのでしょうか。


『曲線の微分トポロジー』
相山 玲子 先生

平面内で,滑らかな閉曲線に10円玉を接した状態で滑ることなく転がして一周させることができたとき,10円玉は自身の中心に対して何回転することになるでしょうか?閉曲線が10円玉と同じ周長の円ならば答えが「2」となることは、10円玉を2枚用意して試してみればわかるでしょう。 N 倍の周長の円ならば10円玉は「 N+1 」回転します。では、その円を長さを変えることなく変形したらどうなるでしょうか?曲線を平面上に置かれた紐とみなして、円周上にある(伸び縮みしない)紐を、平面から持ち上げたり尖ったところを作ったりすることなく、動かしてできる閉曲線を考えます。(ただし、できた閉曲線は自分自身と交わっているかもしれませんが。)このとき、問題の10円玉の回転数は(途中で多少行きつ戻りつするかもしれませんが)実は「 N+1 」のままです。その理由は、「平面上の閉曲線の回転指数が滑らかな変形に対して不変である」というトポロジー(位相幾何)の定理に基づいて説明できます。円の回転指数は「1」で、問題の10円玉の回転数は「回転指数+周長比 N 」となるのです。この講義では、閉曲線の位相不変量である回転指数をとりあげ、曲線の微分幾何的量である曲率との関係や、高さ関数の極大・極小点を数え上げて回転指数を計算する方法などを紹介します。





 9:15 ~ 9:30 受付

 9:30 ~ 9:40 自然学類長挨拶及び事務連絡

 9:50 ~ 11:20講義『素数は数えられそうか』 三河 寛

11:20 ~ 13:00 昼食・学内見学

13:00 ~ 14:30講義『曲線の微分トポロジー』 相山 玲子

14:30 ~ 15:45 在学生との懇談会

15:45 ~ 17:00 質問に答える時間・まとめ