過去の体験学習
年度 | 2022年度 |
---|---|
日付 | 8月4日 |
概要 |
「平面にランダムに点をばらまけるか?」 福島 竜輝 先生
平面上にランダムに点をばらまきたいと思います。何となく下の図のような結果になることが想像できると思います。 しかしこれをどうやって実現するかは、意外に難しい問題です。まず領域を上の図の通りに正方形に限ったとして、「どの特定の点を見ても、そこに点が落ちる確率は 0 だから、最初の点をどこに取ってよいかわからない」、「仮に最初の点の取り方がわかって、そのあとも同じ手続きを繰り返せるとしても、いくつ点を置けばよいのかわからない」、といった問題があります。さらに無限に広がる平面に点をばらまこうと思うと、最初の点を置く場所の悩みはさらに大きくなります。仮に正方形の場合が解決したとすれ ば、平面を正方形のタイルに分割して、それぞれの中にランダムに点をばらまくという方法が考えられますが、「タイルの一辺を 1 にしたときと 2 にしたときで、同じ結果が得られるのか? 蜂の巣のように正六角形に分割してはいけないのか?」など心配の種は尽きません。 この体験学習では、上の問題について一つの自然な方法を提案し、それで上の心 配事が解決しているかを考えてみることにします。またその過程でネイピア数(またはオイラー数)と呼ばれる面白い数が自然に登場するので、ときどき脱線しながらその数に関してもいろいろな性質を調べてみたいと思います。 プログラム 9:30〜 入室可能 |
年度 | 2019年度 |
---|---|
日付 | 2019年8月9日(金) |
概要 |
「オイラーの公式とトポロジー」 丹下 基生 先生
$$V - E + F = 2$$
9:30 受付開始 |
年度 | 平成30年度 |
---|---|
日付 | 2018年8月10日(金) |
概要 |
「整数に関する有名な問題」 金子 元 先生
|
年度 | 平成29年度 |
---|---|
日付 | 2017年8月7日(月) |
概要 |
「無限を数える」 竹内耕太 先生
この体験学習では、ものを数えるということを一から考え直すことによって無限個の対象を扱う方法に触れ、その不思議を実感してもらいたいと思います。無限を自由に想像できるようになったときあなたの見えている世界はもっと奇妙で豊かなものになるでしょう。
|
年度 | 平成28年度 |
---|---|
日付 | 2016年8月12日(金) |
概要 |
「宇宙の形と結び目の不思議」 石井 敦 先生 そんな日常にあふれた結び目は、数学で研究されています。これまでに学んできた数学からは、結び目がどうして数学と関係するのか、想像できないかもしれません。
一見、複雑に見える結び目でも、ほどけていることがあります。(ひもの両端を強く引っ張ると、ほどける結び目を作ったことはありませんか?)止め結びは、ひもで輪を作り、その輪の中にひもの片端を通すことで得られる結び目です。文章で書くと難しく感じますが、みなさん一度は作ったことがある簡単な結び目です。止め結びは、ひもの両端をどんなに強く引っ張ってもほどけません。
二つの結び目が与えられたとき、その二つの結び目が同じ結び目かどうか、どうやって判定したらいいでしょう?
ほどこうと1時間頑張って、ほどけなかったからと言って、本当にほどけない結び目でしょうか?もしかしたら、もう1時間頑張ったら、ほどけるかもしれません。でも本当に、ほどけない結び目だったら何時間頑張ってもほどけません。
数学では、結び目を理論的に扱うことができ、この無限に時間の掛かってしまう問題を回避することができます。結び目理論では代数、幾何、解析、何でも使います。様々な切り口からの研究が結び目理論を豊かにしています。
結ぶという現象のあるところ、結び目理論があります。
宇宙の形が結び目によって表されるということは驚きでしょうか?最近は、DNAやたんぱく質の性質と結び目との関係が研究されています。作用素環論という全く別の理論から結び目の不変量を構成したジョーンズはフィールズ賞を受賞しました。
今回の体験学習では、結び目理論の初歩に触れることで、高校までの数学からは想像の難しい、受験数学から解き放たれた自由な数学を体験することができればと思います。
プログラム
9:30 受付開始
10:00~11:30 講義と演習
11:30~13:00 昼食・昼休み (班ごとにお弁当を食べました。)
13:00~14:30 講義と演習
14:40~15:50 懇談会・修了セレモニー(修了証をお渡ししました。)
16:00~17:00 筑波大学中央図書館見学・学内散策
体験学習当日の様子: 参加者達はまず受付で一本の紐と,結び目の絵が描かれた紙を配布され,同じ結び目が描かれている席を自分で探すところから始まりました. 今回の体験授業の内容は結び目理論の入門講義です.数学でいう結び目とは,一本の紐を絡ませて両端をつなげたもので,ぐねぐねと変形させて同じ形になるものは全て同じ結び目とみなします.
午前中の内容は配布された紐を指定された形に変形してみたり,絵を描いて考えたりと,実際に手を動かして考える課題が与えられました.生徒達は中学校や高校では習わない「トポロジー」の考え方に苦戦しながらも,グループで相談して問題を解こうと奮闘していました. 午後は多項式不変量を用いて結び目を区別する内容に入りました.ある2つの結び目が同じ結び目であることを示すには実際に変形できることを確かめればいいわけですが,異なる結び目で あることを示すには,「いくら頑張っても変形できない」というだけでは不十分です.そこで今回は結び目をあるルールに従って多項式で表し,その多項式を比べることで異なる結び目かどうかを判定しました.見たこともない数式に最初は皆さん面食らっている様子でしたが,TAの方を含め,周りと相談して取り組むことで解決できていました. 普段学校で習うような数学とは一味違う数学に触れ,数学とはいかに自由で楽しいものなのかを実感できる体験学習だったのではないかと思います. |
年度 | 平成27年度 |
---|---|
日付 | 2015年8月7日 |
概要 |
「図形の合同についての再考」 相山玲子 先生 高校生の皆さんは,小学校・中学校の算数・数学において,合同な図形の定義や性質を学んできていることと思います。2つの「図形」が『合同』であるとは,一方の図形を「移動」させて他方に重ね合わせることができる場合でした。この「平面図形」の『合同』の定義において,「移動」とは「平行移動」「回転移動」「対称移動」およびその組み合わせで「平面図形」を動かすことでした。では,なぜこの3つの「移動」を考えればよいのでしょうか? 1つの答えとしては, ”「長さ」を変えない動かし方”はこの3種類で表せるという理由が挙げられます。皆さんがこれまでに勉強してきた「図形」の話は,ほぼ,”「長さ」を変えない動かし方で重ね合わせられる「図形」は同じもの(『合同』)であるとする「幾何学」”です。”いくつもの図形の中から『合同』なものを選びなさい” という問題は, ”『合同』な図形は同じ仲間として, 与えられた図形を分類しなさい”という「幾何学」の問題だということができます。 しかし,実は「幾何学」は対象とする「図形」や「移動」のルールを変えることによって色々な種類があるのです!例えば,「平面図形」の「移動」を,先の3つの操作に「縮小拡大」をつけ加えたものとすると,前述の『合同』の定義は『相似』の定義だと読みかえることができ,”『相似』な図形は同じ仲間とする「幾何学」”が考えられることになります。(ここまでは,ユークリッド幾何とよばれる最も古典的な幾何学です。) 今回の体験学習では,「図形」を「(平面内の)点の集合」として考え,「移動」のルールを拡張あるいは変更して得られる「幾何学」(非ユークリッド幾何,位相幾何・・・) も紹介して,その変更された「移動」の操作も体験してもらいながら,「幾何学」の雰囲気を感じてもらいたいと思います。 昼休みの座談会 「カレーを片手に集って”微積分学成立前夜の微積分学”について語る。」 座談会講師: 西村 泰一 講師 昨年度の体験学習で皆さんに講義をした西村が17,18 世紀の微積分学と19 世紀以降の微積分学(高校の教科書は19 世紀以降のやり方に依拠して書かれています)の違いについてお話しします。また、参加される皆様には ”微積分学序説 - 数学に悟りをもとめて- ”という冊子を無料で差し上げます。 |
年度 | 平成26年度 |
---|---|
日付 | 2014年8月7日 |
概要 |
「黄金期の微積分学」 講師:西村泰一 先生 微積分学の基礎を築いたのはニュートンですが、彼は17世紀の人物です。18世紀にはラグランジュやオイラーを始め、名だたる数学者がいます。17世紀や18世紀の微積分学は冪零無限小を用いて展開されていました。冪零無限小というのは何回か掛け合わせると0になってしまうような小さい実数です。何回か掛け合わせて0になるなら、もともとその数は0ではないかと思うかもしれませんが、こんな数が0以外にも一杯あるような世界で微積分学を楽しんでいたのです。喩えていうと、河童みたいなものですね。昔はどこの沼や川に行っても、河童は必ず見ることができたのですが、最近は河童の目撃談はあまり聞きませんね。どうも死に絶えてしまったようです。環境の変化についていけなかったのかもしれません。 19世紀になると、冪零無限小はいい加減という烙印を押されて追放され、かわって微積分学は極限を用いて展開されることになります。高校の教科書には極限の単元があり、その後に微分や積分の 単元がきますが、これはそうした19世紀の動きを踏まえてのものです。大学で数学を専攻すると、さらに悪名高いεーδでそれに箔をつけます。オイラーというのは、きわめて多産な数学者ですが、”彼がもしも εーδで論文を書かなければいけなかったとしたら、あんなに沢山の論文を書くことは、とてもできなかったであろう”とは、よく言われる話しです。 この講義では冪零無限小を用いた微積分学を楽しんでもらいます。それがいかに躍動感に満ちたものか、堪能してください。 |
年度 | 平成25年度 |
---|---|
日付 | 平成25年8月9日 |
概要 |
『フェルマー予想の話』 木村健一郎 先生 フランスの数学者フェルマー(1601-1665)は、自分の持っていた本(ディオファントスの「数論」)の余白に次のような意味のことを書きました。 「が3以上のとき、$$x^n+y^n=z^n$$をみたす自然数$$x, y, z$$は存在しない」 また「私はこのことの真に驚嘆すべき証明を発見したが、この余白はそれを書くには狭すぎる」とも書いています。$$x^2+y^2=z^2$$をみたす自然数$$x,y,z$$は無数にあるのに、$$n$$が3になったとたんに一つも無くなってしまうのです。フェルマーは彼の「証明」を書き残しませんでした。そのためこの主張はフェルマー予想と呼ばれます。その後300年以上にわたりこれを証明しようと多くの試みがなされましたが、誰も成功しませんでした。しかしその努力が数学の進歩のきっかけとなったこともあります(クンマーなど)。 最終的に証明を与えたのは、アンドリュー・ワイルスで、1994年のことです。しかし彼は直接証明したわけではありません。実はその何年か前に、フライとリベットという人たちが、「谷山-志村予想」という予想が正しければフェルマー予想が正しいことを示しました。谷山-志村予想は、一言でいうと「有理数体上の楕円曲線はモジュラーである」というものです。ワイルスはテイラーという人の協力を得て、谷山-志村予想(の重要な場合)の証明に成功したのです。谷山-志村予想(ワイルスの定理)は、20世紀の数学が達した一つの頂点と言えるものです。この講義では、その内容の不思議さを、実例の計算を通して感じてもらいたいと思います。ワイルスの仕事は、20世紀の初めに高木貞治が証明した「類体論」をさらに進めた「非可換類体論」への一歩を踏み出したものと言えます。類体論についても具体例を計算してもらい、その雰囲気を感じてみたいと思います。 |
年度 | 平成24年度 |
---|---|
日付 | 平成24年8月2日 |
概要 |
『面積を数えよう』 竹山 美宏 先生 私たちは, 小学校の算数で長方形や三角形, 平行四辺形などの面積の公式を学びました. どの公式も, 辺の長さや高さを足したり掛けたり2で割ったりするものですから, 面積を計算するためには(長さを)『測る』という操作が必要なはずです. ところが, ある世界では面積を『数えて』計算することができます. 舞台となるのは下の図のように点が等間隔に並んだ世界です. この点を頂点とする多角形を考えます. 点の間隔を1としましょう. すると, 左の三角形の底辺の長さは3, 高さは2ですから, 面積はです. 右の四角形は正方形で, 一辺の長さは$$\sqrt{5}$$ですから, 面積は $$\sqrt{5} \times \sqrt{5}=5$$です. では, 下の多角形の面積はいくつでしょうか? このように複雑な場合は, 普通に面積を計算すると大変です. 実は, 上の多角形の面積は次の式で求められます. この計算では, あるものを『数えて』面積を求めているのですが・・・. 今回の体験学習では, 上の問題を通じて, 参加者のみなさんと一緒に数学の研究を疑似体験してみようと思います. |
年度 | 平成5年度 |
---|---|
日付 | 平成6年3月21日(月)~22日(火) |
概要 |
平成6年3月21日(月)
|
年度 | 平成6年度 |
---|---|
日付 | 平成7年3月20日(月)~21日(火) |
概要 |
平成7年3月20日(月)
14:40--16:00 まとめ |
年度 | 平成7年度 |
---|---|
日付 | 平成8年3月19日(火)~20日(水) |
概要 |
平成8年3月19日(火)
|
年度 | 平成8年度 |
---|---|
日付 | 平成9年3月19日(水)~20日(木) |
概要 |
[代数] 『リー代数入門(微分とその仲間達)』 宮本雅彦
平成9年3月19日(木) 3月20日(金) |
年度 | 平成9年度 |
---|---|
日付 | 平成10年3月19日(木)~20日(金) |
概要 |
[代数] 『分割数とその周辺』
平成10年3月19日(木)
|
年度 | 平成10年度 |
---|---|
日付 | 平成11年3月19日(金)~20日(土) |
概要 |
[代数] 『何通り?群を使えばこの通り』
平成11年3月19日(金) 3月20日(土) |
年度 | 平成11年度 |
---|---|
日付 | 平成12年3月20日(月)~21日(火) |
概要 |
[代数] 『ベクトル空間のお話』
平成12年3月20日(月) 3月21日(火) |
年度 | 平成15年度 |
---|---|
日付 | 平成15年8月8日(金) |
概要 |
『素数は数えられそうか』 『曲線の微分トポロジー』 9:15 ~ 9:30 受付 |
年度 | 平成17年度 |
---|---|
日付 | 平成17年8月4日(木) |
概要 |
『p-進世界へようこそ』 この講義では、「実数」と平行して存在する「p-進数」と呼ばれる新たな数の世界をご案内します。新世界を訪れるときは誰もが感じるように、始めはこの「p-進世界」も奇妙な世界に見えるでしょうが、最後には p-進世界も(実数世界と同じく)豊かな面白い世界だということを体験していただきたいと思います。 『ギャンブルの数学』 では大学の確率論では何をするかと言えば、自然現象や経済等に現れる偶然現象を数学的に厳密に定式化して議論してみようということです。世の中には競馬競輪といったギャンブルに縁の無い人でも、何かの決断をするときに、運不運を考慮せざるを得ない場面は多いと思います。どこの大学を受験しようかとか、今日は傘を持って出るべきかとか。そのような場合、確率論は魔法のように正解を教えてくれるわけではありませんが、何が合理的かを教えてくれます。偶然がからむ場面では、運の良い者と合理的な者が得をし、 不運な者と不合理な者が損をします。運の方は仕方がありませんから、何が合理的かについて考えたいと思います。 10:00 ~ 12:00講義p-進世界へようこそ (山崎隆雄先生) 12:00 ~ 13:00昼休み学生食堂などに案内します 13:00 ~ 15:00講義ギャンブルの数学 (笠原勇二先生) 15:00 ~ 16:30放課後おやつ + 在学生との懇談会 16:30 終了証授与 写真撮影
|
年度 | 平成18年度 |
---|---|
日付 | 平成18年8月4日(金) |
概要 |
『切ったり貼ったり ―― デーンの定理とその周辺 ――』 10:00 ~ 12:00 講義 切ったり貼ったり ― デーンの定理とその周辺 ―(坂井 公) 12:00 ~ 13:00 昼休み 学生食堂などに案内します 13:00 ~ 15:00 演習 坂井 公 先生と在学生 15:00 ~ 16:30 放課後 在学生との懇談会 16:30 終了証授与 写真撮影 感想 |
年度 | 平成19年度 |
---|---|
日付 | 平成19年8月3日(金) |
概要 |
『連立方程式の応用―スプライン曲線と温度分布―』 スプライン曲線はコンピュータグラフィックスなどで利用されている曲線です。平面に順番を付けた点をプロットし、これらの点を順番通りに通っていく滑らかな曲線を描こうというのが、スプライン曲線の目的です。点を順番通りに通っていく滑らかな曲線ということが、この場合の望む条件になります。そして、そのような曲線を見つけようとすると、連立方程式が現れます。 次は温度分布です。金属の板の一部に熱いものが触れているときに、その板の温度の分布はどうなっているでしょうか。温度は場所によって違いますし、時間によっても変化しますが、時間が経過すると同じ場所の温度は変化しなくなります。この場合、一点のまわりの温度の平均がその点の温度に一致します。金属の板の上に細かい格子を描いて、まわりの点の温度の平均がその点の温度になるということを板全体で考えると連立方程式になります。 どちらの場合も微分の考え方が基礎にあって連立方程式が導かれるのですが、なるべく直感に訴えるわかりやすい説明を心掛けます。 9:15~9:30 受付 1D201前 9:30~9:40 実行委員長(数学類長)挨拶及び事務連絡 1D201 9:40~9:50 講義の行われる教室(1E棟4階)に移動 9:50~11:50 講義と演習 11:50~13:00 昼休み 学生食堂などに案内します 13:00~15:00 講義と演習 15:00~16:30 放課後 在学生との懇談会 16:30~17:00 写真撮影 感想をひと言 |
年度 | 平成20年度 |
---|---|
日付 | 平成20年8月7日(木) |
概要 |
『(ミニ)ルービックキューブに挑戦!』 簡単そうに見えますが実はかなり難しいパズルで、やみくもにキューブを回していてもまず解けません。なにせ、ルービックキューブに回転操作を施すことで起こりうる色の配置パターンは、ナント、 43,252,003,274,489,856,000通り もありますから。 このようにとても難解なルービックキューブですが、その数学的な構造(もう少し詳しくいうと、群論的な構造)をじっくり調べることで解法が見えてきます。体験学習では、サイズがひと回り小さい2×2×2のミニルービックキューブを使って、 Q.ミニルービックキューブの色の配置のパターンは何通りあるか? という問題を考え、その数え上げの過程で見えてくるミニルービックキューブの解法について紹介したいと思います。難解なパズルを通して、群論や組合せ論の世界を覗いてみましょう! |
年度 | 平成21年度 |
---|---|
日付 | 平成21年8月6日(木) |
概要 |
『微分方程式で、鑑定しよう!』 国宝級の絵画や工芸品が発見されたとき、如何にしてそれが本物か偽物かを 見抜くのでしょうか?実は、ある化学物質の変化に注目することで、加工され てから経った時間がわかり、本物か偽物かを鑑定できます。 日常生活でお茶が冷めて苦いと、ヤカンでお茶を製造(加工)してから時間が 経っていることが感覚的にわかるでしょう。短時間前ならば、温度差から次の 関係式(冷却に関するニュートンの法則)を用いて時間を求めることが可能です。 dF(t)/dt =kF(t) ここで、kは物質から決まる定数で、tは時間、Fは温度差と表す関数とします。 このような関係式を微分方程式と呼びます。長時間前ならば、お茶の苦み(酸化) の変化からも同じような微分方程式を用いて時間を求めることが可能です。 今回の体験学習では、“微分”という演算をわかりやすく説明し、微分方程式 の解き方を説明します。そして、美術品の制作(加工)時期を求める年代測定に 挑戦しましょう!具体的には、次のウィンチェスター城の壁に取り付けられて いる円卓を調べてみます。
※)微分方程式を用いて年代測定を行い、この円卓が“長時間前”である遠い昔 5世紀頃実際に実在したアーサー王の円卓であるかどうかを鑑定できます。 |
年度 | 平成22年度 |
---|---|
日付 | 平成22年8月5日(木) |
概要 |
『ギャンブルは儲かるか』 小池 健一 先生 競輪,競馬,競艇を始めとして,世の中には多くのギャンブルがあります. また,ジャンボ宝くじ,ロト,ナンバーズのような宝くじについても, 一獲千金を夢見て発売当日から売り場に並ぶ人たちがニュースによく登場します. これらは本当に儲かるのでしょうか? ギャンブルと確率論は密接な関係があります.そもそも確率論の始まりが, シュバリエ・ド・メレ(1607-1684)がブレイズ・パスカル(1623-1662)に以下のような問題を出し, それをパスカルがピエール・ド・フェルマー(1601-1665)と手紙をやりとりして考えたことである とされています.
起こりうる事象を全て列記し,そのうちのある事象が起こる回数を数え上げてその比率を求めれば, その事象の確からしさが求められます.このような考察から確率論は生まれました. 現実社会においては,結果があらかじめ分からないことが数多くあります. しかもそのようなことに我々の生活が依存しています.このリスクに対して, 我々はどのように立ち向かっていくべきでしょうか. それには,確率を用いてリスクを見積もるのがよいのです. 今回の体験学習では,ギャンブルに関する問題を確率や期待値の概念を使って様々な観点から考えてみることにしましょう. |
年度 | 平成23年度 | ||
---|---|---|---|
日付 | 平成23年8月26日 | ||
概要 |
『いろいろな図形を一刀両断』 永野 幸一 先生 皆さんの目の前に美味しそうなケーキがあり,無二の親友と公平に二等分することになりました.手元には一本のナイフが.こんなとき,しばしば「およそこのあたり」と見当をつけて入刀します.ケーキが円柱や直方体の形をしていると簡単です. 大学で数学を本格的に学ぶと,どんな立体図形Aも一刀両断によって(すなわち一つの平面の切り口によって),同じ体積を持つ二つの部分 A1,A2 に分割できることが分かります.では次の問題はどうでしょう.
実は分割できることが,数学の定理であるハムサンドウィッチの定理によって保証されています.つまり,A をパン,B をハム,C をパンとして,一つのハムサンドウィッチ(A,B,C) を一刀両断して,二つのハムサンドウィッチ(A1,B1,C1) と(A2,B2,C2) に二等分できるのです. 今回の体験学習では,ハムサンドウィッチの定理について学ぼうと思います.立体図形に苦手意識をお持ちの方も心配ご無用です.実習の時間には,次の二次元の問題に取り組み,実際に体感してみましょう.
この分割が可能なことは,パンケーキの定理によって保証されています.仮に二つの図形A,B が共に長方形の形をしていれば,各々の中心(対角線の交点) を通る直線で一刀両断すれば良いことが分かります.ハムサンドウィッチ,パンケーキ,何だか親近感がわいてきました.少し背伸びをして,大学で学ぶ数学を垣間見ることにしましょう. |