汎用データベース
世話人:川村一宏,平山至大,石井敦,丹下基生,蓮井翔
日時 | 2009年12月2日(水)17:00~18:00 |
---|---|
場所 | 筑波大学 自然系学系D棟 D814 |
講演者 | Dmitri Shakhmatov 氏 (愛媛大学 理工学研究科) |
講演題目 | Making a given subset of an abelian group dense in the power of circle |
アブストラクト | The classical result of Hewitt-Marczewski-Pondiczeri states: If $\tau$ is an infinite cardinal, $I$ is a set such that $|I|\le 2^\tau$, and for every $i\in I$ a space $X_i$ has a dense subset of size $\le\tau$, then the product $X=\prod_{i\in I} X_i$ also has a dense subset of size $\le\tau$. In this lecture we investigate the following ``algebraic version'' of this theorem. Let $\kappa$ be an infinite cardinal and $T=R/Z$ be the circle group. Given a fixed subset $S$ of an abelian group $G$, we attempt to find a group homomorphism $\pi:G\to T^\kappa$ such that $\pi(S)$ becomes dense in $T^\kappa$. Of particular interest is the special case when $\pi$ can be chosen to be a monomorphism, that is, when the group $G$ and the subgroup $\pi(G)$ of $T^\kappa$ become isomorphic. We will completely resolve this problem in our talk. |
その他 |