談話会情報
筑波大学数学談話会
日時 | 2013年12月26日 15:30-16:30 (15:00からお茶の時間) |
---|---|
場所 | 自然系学系棟D509 |
講演者 | 斉藤 秀司 氏 (東京工業大学) |
講演題目 | Existence conjecture for smooth sheaves on varieties over finite fields |
概要 |
This is a joint work with Moritz Kerz. Let $$X$$ be a smooth variety over a finite field $$\mathbb{F}_q$$. For an integer $$r>0$$, let $${\cal S}_r(X)$$ be the set of lisse $$\overline{\mathbb{Q}_\ell}$$-sheaves on $$X$$ of rank $$r$$ up to isomorphism and up to semi-simplification. Let $$Cu(X)$$ be the set of normalizations of integral curves on $$X$$. Let $${\cal S}k_r(X)$$ be the set of systems $$(V_Z)_{Z\in Cu(X)}$$ with $$V_Z\in {\cal S}_r(Z)$$ such that $$(V_Z)_{|Z\times _X Z'}=(V_{Z'})_{|Z\times _X Z'}$$ for $$Z,Z'\in Cu(X)$$. The question is how to determine the image of the restriction map $$\tau:{\cal S}_r(X)\to {\cal S}k_r(X)$$, i.e. when a system $$(V_Z)_{Z\in Cu(X)}$$ glues to a lisse $$\overline{\mathbb{Q}_\ell}$$-sheaf on $$X$$. We explain a conjecture of Deligne on the problem which describes the image in terms of a ramification condition at infinity and prove the conjecture in case $$r=1$$. |