新着情報

2012年11月の記事一覧

解析セミナー (11月21日)

日 時 : 11月 21 日(水) 16:30-17:30(延長の可能性あり)
場 所 : 自然系学系棟 D509

講 師 : A.G. Aleksandrov 氏(Institute for Control Sciences, Russian Academy of Sciences)
タイトル : "Multi-logarithmic differential forms on Cohen-Macaulay varieties"

講演要旨は こちら をご覧ください.

集中講義: 幾何学特論II (11/19~21)

授業科目: 幾何学特論 II (集中)
科目番号: 01BB049
日時: 11月19日 (月) ~ 11月21日 (水)
場所: 自然系学系棟 D814

講師: 太田 慎一 氏 (京都大学大学院理学研究科数学専攻・准教授)

講義題目: 最適輸送理論とリッチ曲率

講義概要:
最適輸送理論とは, 「ある分布 (確率測度) を別の分布に最小のコストで輸送する (押し出す) 方法」を研究する分野であり, 偏微分方程式論や確率論などで近年非常に活発に研究されている. 例えば, 最適輸送コストを分布の間の距離と考えるとき, この距離構造についてのある種のエントロピーの勾配流は熱流と一致する. また, リーマン多様体では最適輸送の性質は多様体の曲がり方と密接に関係し, エントロピーの凸性とリッチ曲率を下から押さえることの間の同値性が知られている.

この講義では, まず前半でユークリッド空間内の最適輸送の基本的な性質を解説し, 熱流との関係についても述べる. 後半ではリーマン多様体内の最適輸送を扱い, 上述のリッチ曲率との関係と幾何的・解析的応用を述べる. 最後に最近の発展について簡単に概説する.

代数特別セミナー (11月15日)

日時: 11月15日 (木) 15:30-16:30
場所: 自然系学系棟 D509

タイトル: Higher Chow cycles on Abelian surfaces
講演者: Ramesh Sreekantan 氏 (The Indian Statistical Institute in Bangalore)

概要:
In this talk we use generalizations of beautiful classical geometric constructions of Kummer and Humbert to construct new higher Chow cycles on Abelian surfaces and K3 surfaces over p-adic local fields, generalising some work of Collino. The existence of these cycles is predicted by the poles of the local L-factor at p of the L-function of the Abelian surface. The techniques involve using some recent work of Bogomolov-Hassett and Tschinkel on the deformations of rational curves on K3 surfaces.

解析セミナー (11月14日)

日 時 : 11月 14 日(水) 15:10 ― 18:00 (いつもと時間帯が異なります)
場 所 : 自然系学系棟 D509

(1) 15:10-16:00
講 師 : Katsiaryna Krupchyk 氏 (University of Helsinki)
タイトル : "Inverse boundary value problems for perturbed polyharmonic operators."

(2) 16:10-17:00
講 師 : Mikhail Hitrik 氏 (UCLA)
タイトル : "Tunnel effect and symmetries for non-selfadjoint operators."

(3) 17:10-18:00
講 師 : 長谷川 誠 氏(LORIA,フランス)
タイトル : 「ラドン変換を用いたアフィン変換に頑健なパターンマッチング」

微分幾何火曜セミナー(11月13日)

日時: 11月13日(火)  15:15~16:45
場所: 自然系学系棟B627

講演者: 三石史人 氏 (東北大)
タイトル: アレクサンドロフ空間の局所リプシッツ可縮性とその応用

概要:
アレクサンドロフ空間とは断面曲率の下限を備えた距離空間です。多様体の収束・崩壊理論の観点から、アレクサンドロフ空間の研究は重要であり、その局所的・大域的な性質が色々と判明しています。例えば、ペレルマンによって、アレクサンドロフ空間は位相的に局所可縮である事が知られています。今回、その証明と異なる方法を取ることによって、主張「局所的な一点へのホモトピーがリプシッツ写像で取れる」事を証明しました。講演では、主張の証明のアイディアと応用を述べます。