新着情報

2022年7月の記事一覧

集中講義 幾何学特論Ⅰ

科目番号 0AJAB01 (数学学位プログラム(博士前期課程))

科目名  幾何学特論Ⅰ  (1単位)

講師    納谷 信 教授  (名古屋大学多元数理科学研究科)

題目  ラプラシアン固有値最大化と部分多様体

期間  2022年9月26日(月) 13:00 ~28日(水)

場所  自然系学系棟 D814 (対面実施) D509 に変更します

概要  この集中講義の主題は、「ラプラシアンの固有値を最大化する計量はユークリッド空間へのよい等長埋め込みをもつ」という命題である。  コンパクト多様体において、面積1のリーマン計量をすべて動かしてラプラシアンの第1固有値を最大化する問題(問題A)、およびリーマン計量と体積要素の対(滑らかな測度距離構造)に対する類似の問題(問題B)を考える。問題Aについて、これまでに知られている結果を概観し、とくに、閉曲面上の最大化計量が球面内の極小曲面の誘導計量として実現できるというNadirashviliの定理について詳しく解説する。次に、問題Bについて、リーマン多様体の等長埋め込みとの関係を中心に解説し、Nadirashviliの定理の類似を定式化して証明する。この定理は、問題Bが解けると、よい等長埋め込みが得られることを主張する。

TWINS履修申請期間    2022年7月20日(水)~9月26日(月)

世話人  相山 

8月3日談話会 内海 晋弥氏 (学習院大学)

8月の談話会を以下のように企画しています。

たくさんの方のご参加をお待ちしています。

なお、この談話会は数学フロンティアの対象科目です。

詳細は以下の通りです。

 

日時:2022年8月3日(水)15:15~16:30

場所:オンライン

連絡先:竹内耕太(kota@math.tsukuba.ac.jp)

講演者:内海 晋弥 (学習院大学 理学部 数学科)

講演タイトル:流体問題のための圧力安定化射影有限要素法について

講演アブストラクト:非圧縮粘性流の運動を記述するNavier-Stokes 問題の解を近似する数値解法を考える.流速と圧力が未知関数として現れるという特徴から,数学的な考察だけでなく,近似解を効率的に求解する計算効率の観点からも工夫を必要とする.本講演では,有限要素法と射影法を結合させた手法が主題となる.有限要素法は,応用上現れる領域に対して汎用的に計算可能な数値計算手法であり,数学的にも強固なバックグラウンドがある.ChorinとTemamから始まる射影法は流速と圧力を分離して解くことができる計算効率が良い手法である.本講演では,この射影有限要素法と,流速/圧力を近似する有限要素空間の通常許容される組み合わせについて概観した後,その組み合わせを広げる圧力安定化手法とその意義について解説する.さらに,物質微分の近似法に触れたのち,線形化問題に対する,解の正しさを表す誤差評価を示す.