Blog
2022-7 Blog Entry List
集中講義 幾何学特論Ⅰ
科目番号 0AJAB01 (数学学位プログラム(博士前期課程))
科目名 幾何学特論Ⅰ (1単位)
講師 納谷 信 教授 (名古屋大学多元数理科学研究科)
題目 ラプラシアン固有値最大化と部分多様体
期間 2022年9月26日(月) 13:00 ~28日(水)
場所 自然系学系棟 D814 (対面実施) D509 に変更します
概要 この集中講義の主題は、「ラプラシアンの固有値を最大化する計量はユークリッド空間へのよい等長埋め込みをもつ」という命題である。 コンパクト多様体において、面積1のリーマン計量をすべて動かしてラプラシアンの第1固有値を最大化する問題(問題A)、およびリーマン計量と体積要素の対(滑らかな測度距離構造)に対する類似の問題(問題B)を考える。問題Aについて、これまでに知られている結果を概観し、とくに、閉曲面上の最大化計量が球面内の極小曲面の誘導計量として実現できるというNadirashviliの定理について詳しく解説する。次に、問題Bについて、リーマン多様体の等長埋め込みとの関係を中心に解説し、Nadirashviliの定理の類似を定式化して証明する。この定理は、問題Bが解けると、よい等長埋め込みが得られることを主張する。
TWINS履修申請期間 2022年7月20日(水)~9月26日(月)
世話人 相山