ブログ

2021年11月の記事一覧

12月2日 RCMS サロン「ウェーブレットフレームとその応用」

研究集会:第 8 回 筑波大学 RCMS サロン「ウェーブレットフレームとその応用」
     共催:九州大学マス・フォア・インダストリ研究所
     (文部科学省委託事業「数学アドバンストイノベーションプラットフォーム (AIMaP)」受託機関)

 上記集会をオンラインにて開催いたします。どうかぜひご参加ください。
なお本集会は「数学フロンティア」対象科目です。
    
日時:2021 年 12 月 2 日(木)15:15 ~ 17:35 オンライン(事前申込制)
   以下のサイトにアクセスして、ご登録をお願いいたします(11月30日まで)。
   http://rcms.math.tsukuba.ac.jp/events/rcms-salon-8


プログラム:
■15:15 ~ 15:45 木下保(筑波大学 数理物質系) 
講演タイトル:ウェーブレットフレーム
概要:正規直交基底は冗長性がなく理想的であるが,それを構成するには強い条件
が必要となる.そこで近年脚光を浴びているのは,冗長性がありながらも弱い条件
で構成しやすいフレームの理論である.まずは有限次元の場合の簡単なフレーム
から紹介し,無限次元の場合としては拡大縮小と平行移動のパラメータからなる
ウェーブレットの形をしたウェーブレットフレームについて解説をしていきたい.

■16:00 ~ 16:30 藤井克哉(筑波大学 システム情報系)
講演タイトル:不完全投影データからの新たなCT画像再構成について
概要:被写体にX線を照射させた際に得られる投影データは,数学ではラドン変換
と呼ばれる積分作用素の像としてよく知られている.CT画像再構成とは,ラドン
変換の再生公式を構成することに他ならないが,近年,医学的な観点から欠損の
ある投影データ(つまりラドン変換の像の部分集合)からの再構成法が注目され
ている.その際に,再構成の解の一意性や安定性が理論,応用ともに重要となる.
本講演では,ウェーブレット変換などのスパーシファイ変換を用いる圧縮センシ
ング等を用いた不完全投影逆問題解法を提案し,議論したい.

■16:45 ~ 17:15 芦野隆一 (大阪教育大学)講演タイトル
講演タイトル:四元数値関数の時間周波数解析
概要:三次元空間における平行移動や回転の一連の操作は,四元数で高速で計算
することができる.そのため,四元数は 3D グラフィクスやアニメーション,
さらにコンピュータビジョン,航空機のナビゲーションなどに応用されている.
また,カラー RGB 画像は四元数値行列の虚部とみなせる.両側四元数フーリエ
変換をカラー画像へ応用するために試みた結果について述べる.


各講演のアブストラクトは上記サイトでご覧いただけます。
 
 お申込み・ご参加をお待ちしております。どうかよろしくお願い申し上げます。
                   世話人 木下保
                   問い合わせ先:rcms-salon_at_math.tsukuba.ac.jp

数学域談話会(11/25:竹内有哉先生)

11月の談話会を以下のように企画しています。

たくさんの方のご参加をお待ちしています。

なお、この談話会は数学フロンティアの対象科目です。

詳細は以下の通りです。

 

日時:2021年11月25日(木)15:10~16:40
場所:オンライン
講演者:竹内 有哉先生(筑波大学数理物質系)
講演タイトル:CR多様体の埋め込み問題について
アブストラクト:CR多様体は複素多様体の実奇数次元版に当たる幾何学的対象であり,様々な観点から研究が行われている.今回の講演ではその中でもCR多様体の埋め込み問題に焦点を当てて,これまでに知られている結果を紹介する.まず複素多様体の基礎的な話から始め,CR多様体の定義が確かに複素多様体の実奇数次元版になっていることを説明する.次にCR多様体の埋め込み問題について紹介する.この問題は古くから調べられているものであるが,現在でもなお完全解決に至っているとは言い難い.この埋め込み問題について何がわかっていて,何がわかっていないのかを強擬凸と呼ばれるCR多様体のクラスに制限して詳しく説明したい.最後に3次元CR多様体の埋め込み問題と密接に関わっているCR Paneitz作用素に関して講演者が得た結果を紹介する.

数学域談話会(11/11:伊藤健一先生)

11月の談話会は以下のように企画しています。

たくさんの方のご参加をお待ちしています。

なお、この談話会は数学フロンティアの対象科目です。

詳細は以下の通りです。

 

日時:2021年11月11日(木)16:00~17:30
場所:オンライン
講演者:伊藤 健一先生(東京大学数理科学研究科)
講演タイトル:Hypergeometric expression for the fundamental solution to the 2-dimensional discrete Laplacian
アブストラクト:偏微分方程式論において,基本解の方法は極めて基本的である.特にラプ
ラシアンに対する基本解は学部レベルでも必須の事項であり,広く応用も知られ
ている.一方で,ラプラシアンを離散化した離散ラプラシアンに対する基本解
は,積分表示や漸近挙動など,実用面での性質は古くから知られていたものの,
明示的な表示公式自体は(私の調べた限り)1次元を除いて知られていなかった
ようである.本講演では,多次元離散ラプラシアンのレゾルベントに対し超幾何
関数表示を与え,特に2次元の場合に適切な変数変換公式を適用することで,各
閾値周りでの漸近展開を計算する.この展開の第0次係数として,基本解の明示
的表示公式が現れることを見る.本講演はArne Jensen氏(Aalborg大学)との共
同研究に基づく.