新着情報

2013-12 Blog Entry List

特異点理論についての講演会 (1月14日)

日時:2014年1月14日(火曜日)16:30-18:30
場所:筑波大学 自然系学系 D棟 D509 教室

題目: Singularities at infinity of polynomial mappings
講師:Tat Thang Nguyen 
(Institute of Mathematics, Vietnam Academy of Sciences) 

概要:
Let F: C^n \to C^m be a polynomial mapping. It is  well-known that F
defines a locally trivial fibration outside some subset of C^m which is
called the "bifurcation set". In order to study the topology  of the map F
one problem should be solved is: to characterize the  bifurcation set of
F. In this talk, I will recall known results for this problem  and give
our solution for the problem in some particular cases.

このセミナーでは、多項式写像の分岐点と無限遠点における特異点に
ついてお話し頂きます。 大学院生ならびに教員の方々のご参加を
お待ちしています。 

微分幾何学火曜セミナー(1月14日)

日時:2014年1月14日(火),15:15~16:45
場所:B627

講演者:川上裕 氏 (山口大)
タイトル:曲面のガウス写像の函数論的性質について

説明:
3次元ユークリッド空間内の極小曲面のガウス写像には幾つかの函数論的性質が存在する。例えば、完備かつ非平坦な極小曲面のガウス写像の除外値数は高々4になるという「ピカールの小定理」に対応した結果が成り立つ。また、ガウス写像の7つの値の逆像が一致した場合、その写像が完全に1つに決まるという「ネバンリンナの一意化定理」に対応した結果も成り立つ。さらに、このような性質は、3次元双曲型空間内の平均曲率が1の双曲的ガウス写像や3次元アファイン空間内の非固有アファイン波面のラグランジアンガウス写像についても成り立つ。
そこで、本講演では、これらガウス写像の函数論的性質の意義およびその幾何学的背景について解説する。

大学院集中講義(1月11日~1月13日)

代数学ⅡB
(科目番号 01BB204)

日程 1月11日(土)-1月13日(月)3日間とも10時開始です。
場所 D 509

概要 続.数論のトピックス
   2元2次形式の算術を述べる
参考書 D.Zagier,
    「数論入門、ゼータ関数と2次体」岩波書店

履修登録期限 1月10日(金)まで 
担当 秋山茂樹
    木村健一郎
    三河寛

数学談話会(12月26日)

日時:2013年12月26日(木)15:30~16:30(15:00からお茶の時間)
場所:自然系学系棟D509

講演者:斉藤秀司 氏 (東京工業大学)
講演題目:Existence conjecture for smooth sheaves on varieties over finite fields

概要:
This is a joint work with Moritz Kerz. Let $$X$$ be a smooth variety over a finite field $$\mathbb{F}_q$$. For an integer $$r>0$$, let $${\cal S}_r(X)$$ be the set of lisse $$\overline{\mathbb{Q}_\ell}$$-sheaves on $$X$$ of rank $$r$$ up to isomorphism and up to semi-simplification. Let $$Cu(X)$$ be the set of normalizations of integral curves on $$X$$. Let $${\cal S}k_r(X)$$ be the set of systems $$(V_Z)_{Z\in Cu(X)}$$ with $$V_Z\in {\cal S}_r(Z)$$ such that
$$(V_Z)_{|Z\times _X Z'}=(V_{Z'})_{|Z\times _X Z'}$$ for $$Z,Z'\in Cu(X)$$.
The question is how to determine the image of the restriction map
 $$\tau:{\cal S}_r(X)\to {\cal S}k_r(X)$$,
i.e. when a system $$(V_Z)_{Z\in Cu(X)}$$ glues to a lisse $$\overline{\mathbb{Q}_\ell}$$-sheaf on $$X$$. We explain a conjecture of Deligne on the problem which describes the image in terms of a ramification condition at infinity and prove the conjecture in case $$r=1$$.

数学類集中講義(12月24日~26日)

科目名 数学特別講義Ⅲ(FB14191) 1単位

題目 代数的サイクルとエタールコホモロジー

講師 斉藤秀司 教授 (東京工業大学)

 日程 12月24日 (火) 14時~17時
     12月25日 (水) 未定
     12月26日 (木) 未定
 25日と26日の時間は初日に決めます。

場所 : 自然系学系棟 D 509

概要:代数的サイクルの理論は19世紀の複素関数論におけるリーマン面上の関数と因子の研究に起源を発し、様々な分野と交錯しながら発展し、特に代数幾何学や数論幾何学において重要な役割を果たしている。一方、エタールコホモロジーの理論は Grothendieck により創始され、 Deligne による Weil 予想の解決をもたらした重要な理論であり、特に数論幾何学にとっては不可欠な道具である。本講義の目標はこの二つの理論を、代数幾何の初歩を学んだ者を読者に想定しながら、解説することである。 具体的には Hartshorne の代数幾何学の第3章相当までを予備知識として仮定する。講義では以下の内容について解説する予定である。
  (1)代数的サイクルの導入とAbel-Jacobiの定理
  (2)エタールコホモロジー概説
  (3)エタールコホモロジーへのサイクル写像
  (4)Roitman の定理と高次元不分岐類体論

教科書および参考書:
  (1)代数的サイクルとエタールコホモロジー、斉藤秀司・佐藤周友著 (丸善出版)
  (2)代数的サイクル:高次Chow 群の有限性定理、斉藤秀司(講)、金城謙作・宮坂宥憲(記)、山崎隆雄(監修)、東北大学大学院理学研究科 大学院GP 数学レクチャーノートシリーズ

成績評価の方法: レポート

履修希望者にスキーム論の概説講義を行います。日時: 12月19日(木)13:00-1E506

 世話人:木村健一郎 (内) 4330

履修申請: 12月24日(火)までに、数理物質エリア支援室学群教務に置いてある名簿に記入してください。