新着情報
2012-9 Blog Entry List
数物連携講演会のご案内(10月16日)
以下のとおり、数学域と物理学域共催の数物連携講演会がございます。
皆様のふるってのご参加をお待ちしております。
皆様のふるってのご参加をお待ちしております。
日時:10月16日(火) 15:30 ~ 17:30
※ 15:00 ~ 15:30 にティータイムがあります (ティータイムの場所:総合B棟108号室).
場所:総合B棟110公開講義室
講演者:小澤 正直 氏 (名古屋大学大学院情報科学研究科)
講演題:ハイゼンベルクによる不確定性原理の定式化の反証可能性と新しい定式化,及び,新しい解釈
講演要旨:1927年にハイゼンベルクは,不確定性原理を提唱して,質点の座標Qと
その運動量成分Pを同時に正確に測定することはできず,その誤差ε(Q), ε(P)
の間には,ε(Q)ε(P)≧h/4π という関係があると主張した。しかし,重力波検出
装置の感度限界を巡る論争において,この関係式を破る測定の数学モデルが
構成され,この関係の正当性に疑問が生まれた。本講演では,2003年に
提唱された新しい関係式の理論的普遍妥当性,実験により古い関係が破られ,
新しい関係が成立することを示す可能性を議論する。また,従来,量子力学では
非可換性と同時測定可能性は同等の概念だとされてきたが,新しい関係式
によってこの解釈を変更する必要性があることなどについて,量子測定理論,
量子集合論,及び,弱値と弱測定に関する最新の成果を交えて議論する。
トポロジーセミナー(北山貴裕 氏,10月4日)
日時:2012年10月4日(木)16:50-17:50
場所:筑波大学 自然系学系D棟 D509
講演者:北山貴裕 氏 (京都大学 数理解析研究所)
講演題目:On an analogue of Culler-Shalen theory for higher dimensional representations
アブストラクト:
Culler and Shalen established a way to construct incompressible surfaces
in a 3-manifold from ideal points of the SL_2-character variety.
We present an analogous theory to construct certain kinds of
branched surfaces from limit points of the SL_n-character variety.
Such a branched surface induces a nontrivial presentation of
the fundamental group as a 2-dimensional complex of groups.
This is a joint work with Takashi Hara (Osaka University).
当日,懇親会を予定しております.
場所:筑波大学 自然系学系D棟 D509
講演者:北山貴裕 氏 (京都大学 数理解析研究所)
講演題目:On an analogue of Culler-Shalen theory for higher dimensional representations
アブストラクト:
Culler and Shalen established a way to construct incompressible surfaces
in a 3-manifold from ideal points of the SL_2-character variety.
We present an analogous theory to construct certain kinds of
branched surfaces from limit points of the SL_n-character variety.
Such a branched surface induces a nontrivial presentation of
the fundamental group as a 2-dimensional complex of groups.
This is a joint work with Takashi Hara (Osaka University).
当日,懇親会を予定しております.
微分幾何火曜セミナー(10月2日)
日時: 2012年10月2日(火) 15:15~16:45
場所: 自然系学系棟B627
講演者: 相山玲子(筑波大学)
タイトル: Curvature ellipses of surfaces in Euclidean 4-space
概要:
4次元Euclid空間内の曲面の曲率楕円とは,各接平面内の単位円周を第二基本形式によってうつした像である,各法空間内の楕円です.各法空間内で曲率楕円の位置を判別するための新しい方法を与え,曲率楕円が原点を通る直線内の線分に退化している場合の様子について報告します.
場所: 自然系学系棟B627
講演者: 相山玲子(筑波大学)
タイトル: Curvature ellipses of surfaces in Euclidean 4-space
概要:
4次元Euclid空間内の曲面の曲率楕円とは,各接平面内の単位円周を第二基本形式によってうつした像である,各法空間内の楕円です.各法空間内で曲率楕円の位置を判別するための新しい方法を与え,曲率楕円が原点を通る直線内の線分に退化している場合の様子について報告します.
筑波大学数学談話会(9月27日)
当数学域の青嶋 誠 教授と矢田和善 助教が,
Abraham Wald Prize in Sequential Analysis および
日本統計学会研究業績賞
を受賞しました。それを記念して談話会を開きます。
日時:9月27日(木)15:30 ~ 16:30
※ 15:00 ~ 15:30 にお茶の時間があります。
場所:自然系学系D棟509号室
タイトル:たった30個の標本で,10000次元のデータを,どこまで精密に解析できるか?
Abraham Wald Prize in Sequential Analysis および
日本統計学会研究業績賞
を受賞しました。それを記念して談話会を開きます。
日時:9月27日(木)15:30 ~ 16:30
※ 15:00 ~ 15:30 にお茶の時間があります。
場所:自然系学系D棟509号室
タイトル:たった30個の標本で,10000次元のデータを,どこまで精密に解析できるか?
講演概要:近年,高次元小標本のデータ科学が,理論と応用の両面から世界中で活発に研究されています.ゲノム科学・情報工学・金融工学に端を発する高次元小標本データは,新しいタイプのデータ科学を生み出そうとしています. 従来の統計学は,大標本を前提とするために,高次元小標本のデータ解析に精度を保証する解を与えてくれません.そのことは,最近まで正確には知られていませんでした.高次元小標本のデータ科学には,従来の統計学の枠組みを超えた,新しい発想が必要になります. 本講演では,10000次元を超える高次元データを,100にも満たない僅かな標本数で扱います.上手に扱わないと,高次元データからはノイズしか聞こえてきません.しかし,本来,高次元データは,豊富な情報を内包しているはず.高次元小標本におけるデータ空間の特性を理解して,適切に解析を行えば,高次元データは驚くほど豊かな情報を語ってくれるのです. 当日は,高次元小標本のデータ科学に高精度かつ高速な解析を行うために,青嶋・矢田が一連の共同研究で構築した理論と方法論について,アイデアの幾つかをなるべく平易に説明します. |
研究集会のご案内 (9/10 ~ 9/14)
当数学域の宮本雅彦教授の還暦を記念して、以下のように研究集会を開催いたします。
研究集会名:Conference on Groups, VOAs and Related Structures in Honor of Masahiko Miyamoto
日程:2012年9月10日(月)~14日(金)
会場:自然系学系D棟509室
公式サイト:https://sites.google.com/a/lab.twcu.ac.jp/miyamoto60/
主催者:
安部利之(愛媛大学)、荒川知幸(数理研)、原田昌晃(山形大学)
佐垣大輔(筑波大学)、島倉裕樹(東北大学)、山内博(東京女子大学)
研究集会名:Conference on Groups, VOAs and Related Structures in Honor of Masahiko Miyamoto
日程:2012年9月10日(月)~14日(金)
会場:自然系学系D棟509室
公式サイト:https://sites.google.com/a/lab.twcu.ac.jp/miyamoto60/
主催者:
安部利之(愛媛大学)、荒川知幸(数理研)、原田昌晃(山形大学)
佐垣大輔(筑波大学)、島倉裕樹(東北大学)、山内博(東京女子大学)