新着情報
微分幾何火曜セミナー (12月11日)
日時: 12月11日(火) 15:15~16:45
場所: 自然系学系棟 B814
講演者: 守屋克洋 (筑波大学)
タイトル: 調和逆平均曲率曲面と極小曲面のダルブー変換
概要:
リーマン面から四次元球面への任意の共形写像にたいしダルブー変換が定義できる。これを用いるとウィルモア曲面の列が構成できる。同様にして四次元ユークリッド空間内の一般化された調和逆平均曲率曲面の列が構成できることを報告する。 リーマン面がトーラスである場合、ユークリッド空間内の平均曲率一定曲面のダルブー変換はガウス写像であるところのリーマン面から二次元球面への調和写像の変換で説明される。四次元球面内のウィルモア曲面の場合にも共形ガウス写像であるところの調和写像にたいして同様なことが成立することが期待される。四次元ユークリッド空間内の極小曲面はガウス写像が調和写像であり、共形ガウス写像が調和写像であるので、平均曲率一定曲面とウィルモア曲面の交差するところにある。そこで、極小曲面のダルブー変換を調和共形ガウス写像の変換で説明する。後者はK. Leschke氏との共同研究である。
場所: 自然系学系棟 B814
講演者: 守屋克洋 (筑波大学)
タイトル: 調和逆平均曲率曲面と極小曲面のダルブー変換
概要:
リーマン面から四次元球面への任意の共形写像にたいしダルブー変換が定義できる。これを用いるとウィルモア曲面の列が構成できる。同様にして四次元ユークリッド空間内の一般化された調和逆平均曲率曲面の列が構成できることを報告する。 リーマン面がトーラスである場合、ユークリッド空間内の平均曲率一定曲面のダルブー変換はガウス写像であるところのリーマン面から二次元球面への調和写像の変換で説明される。四次元球面内のウィルモア曲面の場合にも共形ガウス写像であるところの調和写像にたいして同様なことが成立することが期待される。四次元ユークリッド空間内の極小曲面はガウス写像が調和写像であり、共形ガウス写像が調和写像であるので、平均曲率一定曲面とウィルモア曲面の交差するところにある。そこで、極小曲面のダルブー変換を調和共形ガウス写像の変換で説明する。後者はK. Leschke氏との共同研究である。