Blog

# 筑波大学微分幾何学火曜セミナー

筑波大学微分幾何学火曜セミナー

日時：４月１７日 (火) 15:15 ～ 16:45

場所：Ｄ５０９

講演者：Francisco Martin（University of Granada）

題目：Translating graphs for the MCF in Euclidean space

Abstract: A translator is a surface in $\mathbb{R}^3$ that (up to a tangential diffeomorphism) moves with velocity $v=(0,0,-1)$ by Mean Curvature Flow. Equivalently, the mean curvature at each point is $H= (0,0,-1)^{\perp}.$ Besides vertical planes, one of the simplest examples of complete translators is the grim reaper cylinder. In this talk we will describe several existence and uniqueness results for complete translators which are graphs over planar domains. This is a joint work with D. Hoffman, T. Ilmanen and B. White.

日時：４月１７日 (火) 15:15 ～ 16:45

場所：Ｄ５０９

講演者：Francisco Martin（University of Granada）

題目：Translating graphs for the MCF in Euclidean space

Abstract: A translator is a surface in $\mathbb{R}^3$ that (up to a tangential diffeomorphism) moves with velocity $v=(0,0,-1)$ by Mean Curvature Flow. Equivalently, the mean curvature at each point is $H= (0,0,-1)^{\perp}.$ Besides vertical planes, one of the simplest examples of complete translators is the grim reaper cylinder. In this talk we will describe several existence and uniqueness results for complete translators which are graphs over planar domains. This is a joint work with D. Hoffman, T. Ilmanen and B. White.