新着情報
微分幾何セミナー: 相山 玲子 氏 (4/24)
日時: 4月24日(火), 15:15 ~ 16:45
場所: D814
講演者: 相山 玲子 (筑波大学)
タイトル: Surfaces in Euclidean 4-space and inflection points
概要:
4次元Euclid空間内の曲面上で,inflection point とは,第2基本形式がある法方向に対しては退化してしまっている点を意味します.Inflection point では法曲率が0であり,特に極小曲面の場合はそれが必要十分条件となります.Garcia-Mochida-Fuster-Ruas(1998年)は,genericには極小曲面にはinflection poitnがないことを示しています.法曲率が恒等的に0でない極小曲面においては,Inflection point の集合が面積をもたないことが,別の方法で示せます.また,その議論の応用として,法曲率が恒等的に0である極小曲面は,3次元Euclid空間内に含まれていなければならないことがわかります.これは,4次元Euclid空間内の完備極小曲面に対する Smoczyk-Wang-XinによるBernstain 型の結果(2006年)で与えられている条件に対して,その意味づけを与える結果といえます.
場所: D814
講演者: 相山 玲子 (筑波大学)
タイトル: Surfaces in Euclidean 4-space and inflection points
概要:
4次元Euclid空間内の曲面上で,inflection point とは,第2基本形式がある法方向に対しては退化してしまっている点を意味します.Inflection point では法曲率が0であり,特に極小曲面の場合はそれが必要十分条件となります.Garcia-Mochida-Fuster-Ruas(1998年)は,genericには極小曲面にはinflection poitnがないことを示しています.法曲率が恒等的に0でない極小曲面においては,Inflection point の集合が面積をもたないことが,別の方法で示せます.また,その議論の応用として,法曲率が恒等的に0である極小曲面は,3次元Euclid空間内に含まれていなければならないことがわかります.これは,4次元Euclid空間内の完備極小曲面に対する Smoczyk-Wang-XinによるBernstain 型の結果(2006年)で与えられている条件に対して,その意味づけを与える結果といえます.