新着情報

新着情報

数学特別セミナー: 天野通大 氏 (7月9日)

日時: 2014年7月9日(水) 15:45-17:15
場所: 自然学系棟 D509 セミナー室

講演者: 天野 通大 氏 (筑波大付属大塚)
タイトル: 加法群スキームから twisted torus への変形群スキーム

概要: 多くの研究により乗法群の直積のデサントが考察されている. 我々は, 円分拡大に伴うガロア群の作用による乗法群スキームのデサントの手法を, 加法群から乗法群への変形群スキームへ適用する. その結果, 加法群から twisted torus への変形群スキームが構成される. こうした群スキームは Waterhouse-Weisfeiler により既に与えられているが, 我々の構成法は2次デサントによる新しい手法である. この手法を一般化することにより, 様々な群スキームの構成が期待できる. その展望を含め, 扱うデサントの手法や登場する群スキームの説明も丁寧に行いたい.

世話人 増岡 彰

トポロジーセミナー (6月26日)

日時: 2014年6月26日(木)16:30〜17:30
場所: 筑波大学 自然系学系D棟 D814

講演者: Victoria Lebed 氏 (大阪市立大学 数学研究所)
講演題目: A bridge between knotted graphs and axiomatizations of groups

アブストラクト: This talk will be devoted to a new algebraic structure called qualgebra. From the topological viewpoint, our construction is motivated by a study of knotted 3-valent graphs via combinatorially defined coloring invariants. From the algebraic viewpoint, it gives a part of an alternative axiomatization of groups, describing the properties of the conjugation operation and its interactions with the group multiplication. Explicit examples of qualgebras and associated graph invariants will be given. We will finish with some results on topological and algebraic aspects of branched braids, which produce knotted 3-valent graphs via the closure operation.

筑波大学数学談話会 (6月19日)

日時:6月19日(木曜日), 15:30--17:45 (15:00より tea )

場所:自然系学系 D棟 509

プログラム: (15:00--15:30 tea time)

15:30--16:30, 千原浩之 氏 (筑波大学)
題目:ユークリッド空間上のバーグマン変換と量子化
概要:ユークリッド空間上のバーグマン変換とよばれる積分変換は、関数をその超局所化を記述する正則関数へ変換してくれるので、超局所解析や準古典解析における有力な手段になっている。一方、この種の理論は信号処理等の応用分野の研究とも密接な関連がある。本講演では、まずこれらの話題をまとめて概観する。さらに、講演者の仕事や最近取り組んでいる課題を紹介する。

16:30--16:45 休憩

16:45--17:45, 平山至大 氏 (筑波大学)
題目:可微分力学系のエルゴード理論
概要:多様体上の保測な可微分写像の反復合成が生成する力学系のエルゴード理論について概説する.特に,エルゴード性やエントロピーの生成的な正則性に関する話題を紹介したい.

微分幾何学火曜セミナー(6月17日)

日時: 2014年6月17日(火) 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田崎博之(筑波大)
タイトル: 複素旗多様体内の四元数旗多様体の交叉の構造

概要: 今回の発表内容は入江博さん、酒井高司さんとの共同研究の結果に基いています。2012年5月に火曜セミナーで「複素旗多様体内の実旗多様体の交叉の構造」という題名で講演をしました。今回の話はその続きです。前回の講演で定義した複素旗多様体内の対蹠集合の概念に基いて、複素ベクトル空間の複素部分空間の列からなる複素旗多様体内の四元数旗多様体同士の交叉が対蹠集合になることを証明します。前回同様これもコンパクト型Hermite対称空間内の実形同士の交叉が対蹠集合になるという田中真紀子さんとの共同研究の結果の一部の拡張になっています。

解析セミナー(5月28日)

日   時: 5 月 28 日(水) 15時30分~17時

講 演 者: 山澤 浩司 氏 (芝浦工業大学)

題  目: q-Analogue of summability of formal solutions of linear q-difference-differential equations

解析セミナー(5月14日)


日   時: 5 月 14 日(水) 15時30分~17時

場   所: D509

講 演 者: 千原 浩之 氏 (筑波大学)

題   目: Fourth order dispersive systems and dispersive flows into Riemann surfaces

微分幾何学火曜セミナー (5月13日)

日時: 2014年5月13日 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田崎 博之 (筑波大学)
タイトル: 複素Grassmann多様体の正則等長変換の不動点集合と二つの実形の交叉

概要: 今回の発表内容は田中真紀子さん井川治さんとの共同研究の結果にもとづいています。
複素Grassmann多様体の正則等長変換全体の単位連結成分に含まれる変換の不動点集合を記述し、二つの実形の交叉と正則等長変換の不動点集合の関係を明らかにします。これにより、交叉が離散的のときに対蹠集合になるという田中真紀子さんとの共同研究の結果の別証明が得られます。

解析セミナー(4月30日)

日   時: 4 月 30 日(水) 15時30分~17時

講 演 者: Alexandru DIMCA 氏 (University of Nice Sophia Antipolis)

題   目: D-modules and projective hypersurfaces with isolated singularities

講演要旨は こちら をご覧ください.

微分幾何学火曜セミナー (4月15日)

日時: 2014年4月15日(火) 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田崎博之 (筑波大学)
タイトル: 有向実Grassmann多様体の対蹠集合の系列と評価

概要: 有向実Grassmann多様体の極大対蹠集合は、有限集合内のある性質を持つ部分集合の族と一対一に対応すること、および階数 4 以下の場合の極大対蹠集合の分類を2013年1月の火曜セミナーで示しました。今回の講演では階数 4 以下の場合の極大対蹠集合の分類に現れた対蹠集合の系列を一般化し、これらがいつ極大になるか明らかにします。さらにこの系列を利用して、階数 5 の場合の対蹠集合の大きさの評価を与えます。

研究集会「リーマン幾何と幾何解析」(3月7日〜8日)

研究集会「リーマン幾何と幾何解析」を
下記の通り開催いたしますのでご案内申し上げます.
皆様のご参加をお待ちしております.


研究集会「リーマン幾何と幾何解析」
日時: 2014年3月7日(金)13時--8日(土)16時頃
場所: 筑波大学自然系学系棟 B棟2階 B215

プログラム:
3月7日(金)
13:00--14:00: 本多 正平 氏 (九州大学)
チーガー等周定数と$p$ラプラシアンとグロモフ・ハウスドルフ収束

14:15--15:15: 櫻井 陽平 氏 (筑波大学)
リッチ曲率が下に有界な境界付き多様体の剛性

15:45--16:45: 新倉 健人 氏 (東京工業大学)
リッチ平坦多様体の無限遠での崩壊現象について

17:00--18:00: 高橋 淳也 氏 (東北大学)
Partial collapsing and the spectrum of the Hodge-Laplacian

3月8日(土)
10:00--11:00: 三石 史人 氏 (東北大学)
カレントと測度ホモロジー

11:15--12:15: 小澤 龍ノ介 氏 (東北大学)
Limit formulas for metric measure invariants and phase
transition property

13:30--14:30: 野中 純 氏 (慶應義塾大学)
双曲空間における Coxeter 多面体について

14:45--15:45: 石田 政司 氏 (大阪大学)
Uniform Sobolev inequalities along geometric flows


世話人:
山口 孝男 (筑波大学)
永野 幸一 (筑波大学)

解析セミナー (3月5日)

日時: 2014年3月5日(水) 15:00~17:30
場所: 自然系学系棟 D509

15:00~15:50  Jean Vaillant 氏 (パリ第6大学)
Necessary and sufficient conditions of hyperbolicity for linear differential systems.

16:00~17:30  伊藤 健一 氏 (筑波大学)
Threshold properties of one-dimensional discrete Schrödinger operators.
(講演の概要はこちら をご覧ください.)

http://www.math.tsukuba.ac.jp/~analysis/

臨時解析セミナー(2月18日)

日  時: 2月18日(火)15時30分~17時00分
(曜日が通常と異なりますので,ご注意ください.)

講 演 者: Elmar Schrohe 氏 (Leibniz Universit\"at Hannover)

題  目: Solvability of a Degenerate Boundary Value Problem

要  旨: Following work of K.\ Taira we consider the boundary value problem
$$Au=f\text{ in } X,\qquad Lu=g \text{ on }\partial X,$$
where $X$ is a compact manifold with boundary,
$A$ is a strongly elliptic second order operator which in local coordinates is of the form
$$A=\sum_{jk}a^{jk}\partial_{x_j}\partial_{x_k}+\sum b^j\partial_{x_j} + c$$
with real coefficients $a^{jk}=a^{jk}, b^j,c$ in the Htlder class $C^\tau$, $\tau>2$.
We require that
$\sum a^{jk}\xi_j\xi_k\ge \alpha |\xi|^2$ for some $\alpha>0$ and  $0\not\equiv c\le0$.

The  boundary condition $L$ is assumed to be of the form
$$Lu = \mu_0\gamma_0u + \mu_1\gamma_1u,$$
where $\gamma_0$ is the evaluation map at the boundary
and $\gamma_1$ is the evaluation of the exterior normal derivative at the boundary.
The $C^\tau$-functions $\mu_0$ and $\mu_1$ on $\partial X$
are supposed to be nonnegative with $\mu_0+\mu_1$ strictly positive everywhere.

Using the calculus of pseudodifferential operators with symbols of limited regularity
we then show the solvability of the boundary value problem
in various classes of Sobolev and Zygmund spaces with regularity
depending on the smoothness $\tau$ of the coefficients.
We also study the resolvent in suitable sectors of the complex plane.

\hfill (joint work with M. Hassan Zadeh)

【 場所 】 自然学系D棟 509教室

Tsukuba Mini-Workshop on Hopf Algebras (2月17日)

日時: 2月17日(月) 10:30-18:00
場所: 自然系学系棟 D509 セミナー室

10:30-12:00  津野 祐司 (千葉工大)
                   Galois objects and cleft objects for free Hopf algebras
13:30-15:00  増岡 彰 (筑波大)
                   Cleftness results on universal quantum groups
15:15-18:00  ディスカッション


世話人  増岡 彰

集中講義(2月17日~20日)

科目名:代数学特論Ⅱ (1単位)
科目番号:01BB013
講師:鈴木武史 氏 (岡山大学大学院自然科学研究科・准教授)

日程:2月17日(月) 10:00~
     2月18日(火) 未定 当日決定
     2月19日(水) 未定 当日決定
     2月20日(木) 未定 当日決定
場所:自然系学系棟D814

講義題目:対称群とHecke代数の表現論
講義概要:対称群および付随する岩堀-Hecke代数、そしてそれらの拡張である(退化)アフィンHecke代数の表現論について講義する。特にA型のLie代数の表現論との関係に焦点を当てる。時間があれば圏化の話題についても触れる。

TWINS履修申請:1月27日(月)~2月14日(金)
世話人:佐垣大輔

Tsukuba Workshop for Young Mathematicians (Feb 13-14)

Tsukuba Workshop for Young Mathematicians started in 2008 and has been held annually in Tsukuba. This workshop is organized with the aim of promoting communication and networking among young mathematicians, especially the graduate students studying at Asian universities.

Date: February 13 (Thu) - 14 (Fri), 2014
Place: The Tsukuba Center for Institutes
Address: 2-20-5 Takezono, Tsukuba, Ibaraki 305-0032, JAPAN

http://www.math.tsukuba.ac.jp/workshopyoung2014/

代数セミナー(2月12日)

Satellite Seminar to Tsukuba Workshop for Young Mathematicians
講演者:Prof.Wang Qing(Xiamen University)

日時:2月12日(水) 16:00~17:00
場所:自然系学系棟 D814 セミナー室

タイトル:Module categories for toroidal Lie algebra

Abstract  In this talk,I will present some recent work on toroidal Lie algebra. We use basic formal variable techniques to study certain categories of modules for the toroidal Lie algebra τ. More specifically,we define and study two categories ετ and cτ of τ-modules using generating functions,where ετ is proved to contain the evaluation modules while cτ contains certain restricted τ-modules,the evaluation modules,and their tensor product modules. Furthermore,we classify the irreducible integrable modules in categories ετ and cτ. This is a joint work with Hongyan Guo and Shaobin Tan. 

ご来聴をお待ちしています。
森田純(4371)

解析セミナー(2月12日)

日  時: 2月12日(水)15時30分~17時00分

講 演 者: Yves Dermenjian 氏 (Aix-Marseille University)

題  目: The guided states of 3D biperiodic Schroedinger operators

要  旨: Let us consider the Laplacian $H_0= - \Delta$ perturbed by a non-positive potential $V$, which is periodic in two directions, and decays in the remaining one, $x_1$. We are interested in the characterization and decay properties of ground states, defined as the eigenfunctions of the reduced operators in the Bloch-Floquet-Gelfand transform, in the periodic variables, of $H = H_0 + V$. If $V$ is sufficiently small and decreases fast enough in the infinite direction $x_1$, we prove that the guided waves are generically characterized by quasi-momenta belonging to some one-dimensional real analytic submanifold of the Brillouin zone. Moreover they decay faster than the inverse polynomial function in the infinite direction. This is a joint work with F. Bentosela, C. Bourrely and E. Soccorsi.

【 場所 】 自然学系D棟 509教室

トポロジーセミナー(2月6日)

日時:2014年2月6日(木)16:00~17:30
場所:筑波大学 自然系学系D棟 D 509

講演者:石田裕昭 氏 (京都大学 数理解析研究所)
講演題目:単体的球面とmoment-angle多様体

アブストラクト:頂点の数がmである単体的複体Kに対してmoment-angle複体と呼ばれるm次元トーラス作用付き位相空間が定義され、Kの実現がn-1次元球面である場合には対応するmoment-angle複体はm+n次元位相多様体になることが知られている。
さらにKがstar-shapedである場合には、対応するmoment-angle多様体はトーラス不変な可微分構造を持つことがPanov-Ustinovskyにより示されている。
本講演では、moment-angle多様体がトーラス不変な可微分構造をもつためのKに関する必要条件および十分条件について述べる。これは大阪市立大学の枡田幹也氏との共同研究に基づく。

代数特別セミナー(2月5日)

日時 2月5日(水) 15:30~17:30
場所 自 D814

講演者 Bo TAN 氏 華中科技大学教授
タイトル The graph of continuous function and packing dimension.

連絡先 秋山茂樹 (4395)