新着情報

新着情報

Tsukuba Workshop for Young Mathematicians (Feb. 13, 2015)

Tsukuba Workshop for Young Mathematicians started in 2008 and has been held annually in Tsukuba. This workshop is organized with the aim of promoting communication and networking among young mathematicians, especially the graduate students studying at Asian universities.

 Date: February 13, 2015
 Place: The Tsukuba Center for Institutes
 Address: 2-20-5 Takezono, Tsukuba, Ibaraki 305-0032, JAPAN

https://sites.google.com/a/math.tsukuba.ac.jp/workshopyoung2015/

数学特別セミナー (1月24日)

講演者:松井 千尋 氏(東京大学大学院情報理工学系研究科)

題目:非対称単純排他過程の多状態への拡張

日時:2015年1月24日(土曜日) 14:00--15:00 (free discussion 15:00--17:00)

場所:自然系学系 D棟 814

概要: 
非対称単純排他過程 (ASEP) は可解確率模型として知られており、
定常状態や粒子密度・カレントなどの物理量が厳密に議論されてきた。
ASEPの可解性は、系の時間発展を特徴付けるMarkov行列がTemperley-Lieb
代数を満たすことに起因している。Markov行列を代数的に拡張することにより、
系の可解性を保ったまま多種粒子系への拡張が行われてきた。
本講演では、代数の表現次元を高次に拡張することにより、多状態ASEP
(2粒子以上による同サイト占有を許す確率過程)を構成する方法について議論する。

筑波大学数学談話会 (12月4日)

日時: 12月4日(木曜日)、15:30--17:00 (15:00 より tea )

場所: 自然系学系 D棟 509

講演者: 岩根 秀直 氏 (国立情報学研究所)

題目: 計算機が数学試験問題を解く - 数式処理編

概要: 国立情報学研究所を中心として進めている「ロボットは東大に入れるか」プロジェクトでは, 「人工知能」としてまとめられる諸技術に対する総合的ベンチマークとして, 様々な科目の大学入試問題を計算機で直接解くことに挑戦している.

我々は数学入試問題に取り組んでおり, 開発中のシステムは問題文を入力として, 自然言語処理により構築された一階述語論理式を数式処理により問題を解く方法をとっている. 本講演では, 数学入試問題の数式処理による解法と, 自然言語処理との接合による課題解決方法について紹介する.

教育研究科 集中講義(12月3日〜5日)

科目番号:01B6641
科目名:数学特論I
日時:2014年12月3日(12:15開始)、12月4日、12月5日(4日と5日の日程は3日に連絡します)
場所:自然系学系棟 D814 
担当教員:岩根 秀直先生(国立情報学研究所)
講義題目:計算代数における実閉体上の限量記号消去法
講義概要:
限量記号消去法 (Quantifier Elimination: QE) は, 限量記号がついた一階述語論理式を入力として,それと等価で限量記号のない論理式を出力するアルゴリズムである.一階述語論理式の記述力能力は高く, 制御・最適化など多くの応用をもち, QE は非常に重要である.
実閉体上での QE アルゴリズムについては, 1930 年に A. Tarski がその存在を示し, 具体的なアルゴリズムも示した. 現在では, より効率的な汎用 QE アルゴリズム Cylindrical AlgebraicDecomposition のほか, 特別な問題のクラスに対するより効率的な QE アルゴリズムの研究がすすめられている.
本講義では, QE を実現するために必要な計算代数の基礎知識, QE アルゴリズム, QE ツールの利用方法, QE の効率的な実装方法, および, 実問題への適用方法について紹介する.
本講義は, 主に穴井・横山著「QE の計算アルゴリズムとその応用」の内容を補完する形で進めるが, その内容を前提としない予定である.

備考:
  • 全学計算機(サテライト)端末を用いた実習を予定しているので、履修者は全学計算機のアカウントを確認しておくこと。
  • 本講義は教育研究科の授業科目ですが、他研究科の学生も単位を修得できる場合があります。詳細は各専攻事務室へ相談してください。
世話人:照井 章(数理物質系 数学域)

科研費シンポジウム(12月1日,2日)

科研費シンポジウム 「統計的推測の理論的基礎とその応用」を 下記の要領で開催いたします. 

皆様のご参加をお待ちしております.

ーーーーーーーー 
 「統計的推測の理論的基礎とその応用」

 科研費基盤(B)「統計的推測における非正則構造の解明とその応用」 
 研究代表者:赤平昌文(筑波大学)によるシンポジウム 
 世話人:大谷内奈穂(筑波大学数理物質系)
               小池 健一(筑波大学数理物質系) 
               赤平 昌文(筑波大学) 
 日時:2014年12月1日(月)〜2日(火) 
 場所:筑波大学筑波キャンパス自然系学系棟D棟5階D509(茨城県つくば市天王台1-1-1) 
アクセス方法はこちらをご覧ください

プログラムはこちらをご覧ください.

教育研究科集中講義(12月10日-12日)

科目番号:01B6643
科目名:数学特論III (1単位)
担当教員:高橋 邦彦 先生(名古屋大学 医学系研究科 准教授)
日時:2014年12月10日(水)13:45~       
      12月11日(木)       
      12月12日(金)
      (2日目以降の日程の詳細については1日目にお知らせします)
題目:医学データ解析入門
概要:調査研究を行うためには,その目的に応じた適切な研究デザインのもとで,必要最小限のデータを集め,適切な統計解析を行うことが重要です。この講義では,特に医学・保健医療分野に注目し,調査研究のプロセスに欠かせない,統計の考え方,基本的な調査デザインと解析方法,結果の見方とその解釈について,実際の医学分野の例題を用いながら講義を行います。具体的には㈰医学データの要約,㈪推定と検定,㈫平均値の比較,㈬頻度の比較,㈭相関と回帰分析,㈮交絡と多変量解析による調整,㈯生存時間データの解析,などについて,演習を含めたデータ解析と解釈に重点を置いて講義します。本講義を受講するにあたっては,基本的な数理の知識があることが望ましいですが,統計や医学についての知識は特に必要ありません。また簡単な演習のため各自電卓またはパソコンを持参してください。
場 所:自然系学系棟D棟D814
世話人:小池 健一(数学)
TWINS履修登録期間:11/14 (金)まで

筑波大学数学談話会 (11月20日)

講演者: 中島 誠 氏 (筑波大学)

題目: 生物の人口模型と(確率)偏微分方程式

概要: 数学では生物の個体数の時間変動を表すものとして有名なものでは微分方程式で現れるLogistic方程式やLotka-Volterra方程式などがある. 確率論においてもGalton-Watson過程という個体数の変動のランダム性を考慮して模型がある. さらに個体に空間の動きを加えた模型を考え, そこから自然な極限として現れる確率過程は非線形熱方程式や確率偏微分方程式との関連が知られている. 今回は時空間にランダムな要素を含めた生物の人口模型を考えたとき, 関連する非線形熱方程式や確率熱方程式はどのような影響を受けるのかについて話す.

Workshop on Statistical Methods for Large Complex Data

下記の科研費ワークショップについて、ご案内
申し上げます。
--------------------------------------------------------------------
科学研究費補助金 基盤研究(B) 22300094
「高次元データの理論と方法論の総合的研究(研究代表者:青嶋誠)」
学術研究助成基金助成金 挑戦的萌芽研究  26540010
「ビッグデータの統計学:理論の開拓と3Vへの挑戦 (研究代表者:青嶋誠)」
による

「Workshop on Statistical Methods for Large Complex Data」

世話人:
青嶋誠 (筑波大学)、佐藤美佳 (筑波大学)、矢田和善 (筑波大学)
Ming-Yen Cheng (National Taiwan University)
日 時: 2014年11月10日 (月) ~ 12日 (水)
場 所: 筑波大学自然系学系棟D棟 D509 (筑波キャンパス内)

内容・目的:http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/symposium.html

プログラムや懇親会などの最新情報は、下記サイトをご確認下さい。
随時更新していきます。
http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/workshop_detail.html

英語バージョンはこちらです:
http://www.math.tsukuba.ac.jp/~aoshima-lab/workshop_detail.html

なお、11日(火)に、以下の3名の著名な研究者による招待講演と指定討論
を予定しています。
Prof. Ming-Yen Cheng (National Taiwan University)
Prof. Ching-Kang Ing (Academia Sinica)
Prof. Mei-Hui Guo (National Sun Yat-sen University)

大学院集中講義

科目: 幾何学特論II (01BB049)
題目: ラグランジュ部分多様体と等径超曲面の幾何学

講師:  大仁田 義裕 教授 (大阪市立大学理学研究科数学教室&数学研究所)

日程:  1月5日(月)~7日(水) 10時~

教室:  自然系学系棟 D814

講義概要 近年のシンプレクティック幾何学の発展に伴い,ケーラー多様体のラグランジュ部分多様体の微分幾何学の研究への関心は益々のものがある。今回は,その基本的な概念の説明から最近の私の研究やその関連話題について講義したい。とくに,中国・北京の清華大学の馬輝(Hui Ma)副教授との共同研究を含む,標準球面の等径超曲面と複素2次超曲面のラグランジュ部分多様体の幾何学との関わりについて述べる。

1.     リーマン多様体の部分多様体の基本事項

2.     シンプレクティック多様体のラグランジュ部分多様体,運動量写像,ハミルトン変形

3.     ケーラー多様体のラグランジュ部分多様体の基本事項

4.     ハミルトン極小性,ハミルトン安定性とハミルトン剛性

5.     複素ユークリッド空間および複素射影空間のラグランジュ部分多様体

6.     ラグランジュ部分多様体としてのエルミート対称空間の実形

7.     複素2次超曲面のラグランジュ部分多様体と標準球面の超曲面幾何学

8.     標準球面の等径超曲面の構造・構成・分類

9.     等径超曲面のガウス像として得られる極小ラグランジュ部分多様体

10.    等径超曲面のガウス像のラグランジュ交叉問題

世話人 相山玲子(数理物質系数学域)

第1回数理連携サロン (11月11日)

第一回数理連携サロン

2014年11月11日 火曜日 15:15-17:15
筑波大学第一エリア 総合研究棟B0110 (会場が変わりましたのでご注意ください)

15:15-15:45 磯崎洋(筑波大学数理物質系 数学域・数理物質融合科学センター)
「格子上の逆散乱問題への数学からのアプローチ」

16:00-16:30 西堀英治(筑波大学数理物質系 物理学域・数理物質融合科学セン
ター・TIMS)
「X線構造計測における逆問題とその解決法」

16:45-17:15 遠藤智子(東京電機大学 情報環境学部 研究員)
「結晶構造を持つウェーブレットの紹介」

筑波大学数学談話会 (10月16日)

日時:10月16日(木曜日)、15:30--16:30 (15:00よりお茶の時間)


場所:自然系学系棟D509


講演者:金子 元 氏 (筑波大学)


講演題目:Nonzero digitが少ないベキ級数の値の超越性および代数的独立性


概要:ほとんどすべての複素数が超越数であるにもかかわらず, 具体的に与えられた複素数が超越数であることを示す事は一般に難しい. 例えば, $$e+\pi$$は超越数であると予想されているが, まだ証明されていない. 関数の値の超越性および代数的独立性を示す事は数論において重要である. 本講演では, ベキ級数で与えられる関数に代数的数を代入した値の超越性および代数的独立性を調べる.

第2回 つくばフレッシュマンセミナー (7月20日 - 21日)

研究集会「つくばフレッシュマンセミナー」を開催いたしますのでご案内申し上げます.

日時: 2014年7月20日(日) 13:30 - 7月21日(月・海の日) 18:00

場所: 筑波大学・自然系学系D棟509号室

世話人: 柴田大樹(筑波大学)・清水健一(名古屋大学)

プログラムは以下のとおりです. 講演概要等は, 資料(PDFファイル)をご参照ください.


■ 7月20日(日)
13:30 - 14:00 山口 正男 (筑波大学)
McKay 予想と単純群
14:15 - 14:45 黒澤 光希 (筑波大学)
ある条件をもつ Picard-Vessiot 群の構造について
15:00 - 15:30 Nathan Caalim (筑波大学)
A class of $\beta$-transformations on $(0,1)^2$
15:45 - 16:45 鈴木 俊夫 (筑波大学)
連続関数のウェーブレット展開に関する無条件収束性について
17:00 - 18:00 小澤 龍ノ介 (東北大学)
空間列の相転移性質
18:30 -
懇親会


■ 7月21日(月・海の日)
11:00 - 11:30 柴田 大樹 (筑波大学)
スーパー可換ホップ代数の余フロベニウス性について
11:45 - 12:15 田中 勇一 (筑波大学)
群の公理について
13:30 - 14:00 嶺 幸太郎 (東京大学)
位相空間論入門
14:15 - 14:45 張 志朗 (筑波大学)
Fibration and collapsing manifolds
15:00 - 15:30 小林 宗広 (筑波大学)
モデル理論の機械学習への応用
15:45 - 16:45 庄司 直高 (筑波大学)
Riemann 多様体上の Maxwell 方程式に対する境界値逆問題
17:00 - 18:00 大音 智弘 (筑波大学)
連分数を用いた超越数の判定

数学特別セミナー(7月17日)

日時: 2014年7月17日(木) 15:00-16:00
場所: 自然系学系棟D814

講演者: George Elliott (University of Toronto)
タイトル: A very brief survey of C^*-algebra classification theory

日時: 2014年7月17日(木) 16:15-17:15
場所: 自然系学系棟D814

講演者: Noriko Yui (Queen's University)
タイトル: Modularity/Automorphy of Calabi-Yau manifolds of dimension \leq 3

数学特別セミナー: 天野通大 氏 (7月9日)

日時: 2014年7月9日(水) 15:45-17:15
場所: 自然学系棟 D509 セミナー室

講演者: 天野 通大 氏 (筑波大付属大塚)
タイトル: 加法群スキームから twisted torus への変形群スキーム

概要: 多くの研究により乗法群の直積のデサントが考察されている. 我々は, 円分拡大に伴うガロア群の作用による乗法群スキームのデサントの手法を, 加法群から乗法群への変形群スキームへ適用する. その結果, 加法群から twisted torus への変形群スキームが構成される. こうした群スキームは Waterhouse-Weisfeiler により既に与えられているが, 我々の構成法は2次デサントによる新しい手法である. この手法を一般化することにより, 様々な群スキームの構成が期待できる. その展望を含め, 扱うデサントの手法や登場する群スキームの説明も丁寧に行いたい.

世話人 増岡 彰

トポロジーセミナー (6月26日)

日時: 2014年6月26日(木)16:30〜17:30
場所: 筑波大学 自然系学系D棟 D814

講演者: Victoria Lebed 氏 (大阪市立大学 数学研究所)
講演題目: A bridge between knotted graphs and axiomatizations of groups

アブストラクト: This talk will be devoted to a new algebraic structure called qualgebra. From the topological viewpoint, our construction is motivated by a study of knotted 3-valent graphs via combinatorially defined coloring invariants. From the algebraic viewpoint, it gives a part of an alternative axiomatization of groups, describing the properties of the conjugation operation and its interactions with the group multiplication. Explicit examples of qualgebras and associated graph invariants will be given. We will finish with some results on topological and algebraic aspects of branched braids, which produce knotted 3-valent graphs via the closure operation.

筑波大学数学談話会 (6月19日)

日時:6月19日(木曜日), 15:30--17:45 (15:00より tea )

場所:自然系学系 D棟 509

プログラム: (15:00--15:30 tea time)

15:30--16:30, 千原浩之 氏 (筑波大学)
題目:ユークリッド空間上のバーグマン変換と量子化
概要:ユークリッド空間上のバーグマン変換とよばれる積分変換は、関数をその超局所化を記述する正則関数へ変換してくれるので、超局所解析や準古典解析における有力な手段になっている。一方、この種の理論は信号処理等の応用分野の研究とも密接な関連がある。本講演では、まずこれらの話題をまとめて概観する。さらに、講演者の仕事や最近取り組んでいる課題を紹介する。

16:30--16:45 休憩

16:45--17:45, 平山至大 氏 (筑波大学)
題目:可微分力学系のエルゴード理論
概要:多様体上の保測な可微分写像の反復合成が生成する力学系のエルゴード理論について概説する.特に,エルゴード性やエントロピーの生成的な正則性に関する話題を紹介したい.

微分幾何学火曜セミナー(6月17日)

日時: 2014年6月17日(火) 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田崎博之(筑波大)
タイトル: 複素旗多様体内の四元数旗多様体の交叉の構造

概要: 今回の発表内容は入江博さん、酒井高司さんとの共同研究の結果に基いています。2012年5月に火曜セミナーで「複素旗多様体内の実旗多様体の交叉の構造」という題名で講演をしました。今回の話はその続きです。前回の講演で定義した複素旗多様体内の対蹠集合の概念に基いて、複素ベクトル空間の複素部分空間の列からなる複素旗多様体内の四元数旗多様体同士の交叉が対蹠集合になることを証明します。前回同様これもコンパクト型Hermite対称空間内の実形同士の交叉が対蹠集合になるという田中真紀子さんとの共同研究の結果の一部の拡張になっています。

解析セミナー(5月28日)

日   時: 5 月 28 日(水) 15時30分~17時

講 演 者: 山澤 浩司 氏 (芝浦工業大学)

題  目: q-Analogue of summability of formal solutions of linear q-difference-differential equations

解析セミナー(5月14日)


日   時: 5 月 14 日(水) 15時30分~17時

場   所: D509

講 演 者: 千原 浩之 氏 (筑波大学)

題   目: Fourth order dispersive systems and dispersive flows into Riemann surfaces

微分幾何学火曜セミナー (5月13日)

日時: 2014年5月13日 15:15~16:45
場所: 自然系学系棟 B627

講演者: 田崎 博之 (筑波大学)
タイトル: 複素Grassmann多様体の正則等長変換の不動点集合と二つの実形の交叉

概要: 今回の発表内容は田中真紀子さん井川治さんとの共同研究の結果にもとづいています。
複素Grassmann多様体の正則等長変換全体の単位連結成分に含まれる変換の不動点集合を記述し、二つの実形の交叉と正則等長変換の不動点集合の関係を明らかにします。これにより、交叉が離散的のときに対蹠集合になるという田中真紀子さんとの共同研究の結果の別証明が得られます。