新着情報

新着情報

代数セミナー(2月12日)

Satellite Seminar to Tsukuba Workshop for Young Mathematicians
講演者:Prof.Wang Qing(Xiamen University)

日時:2月12日(水) 16:00~17:00
場所:自然系学系棟 D814 セミナー室

タイトル:Module categories for toroidal Lie algebra

Abstract  In this talk,I will present some recent work on toroidal Lie algebra. We use basic formal variable techniques to study certain categories of modules for the toroidal Lie algebra τ. More specifically,we define and study two categories ετ and cτ of τ-modules using generating functions,where ετ is proved to contain the evaluation modules while cτ contains certain restricted τ-modules,the evaluation modules,and their tensor product modules. Furthermore,we classify the irreducible integrable modules in categories ετ and cτ. This is a joint work with Hongyan Guo and Shaobin Tan. 

ご来聴をお待ちしています。
森田純(4371)

解析セミナー(2月12日)

日  時: 2月12日(水)15時30分~17時00分

講 演 者: Yves Dermenjian 氏 (Aix-Marseille University)

題  目: The guided states of 3D biperiodic Schroedinger operators

要  旨: Let us consider the Laplacian $H_0= - \Delta$ perturbed by a non-positive potential $V$, which is periodic in two directions, and decays in the remaining one, $x_1$. We are interested in the characterization and decay properties of ground states, defined as the eigenfunctions of the reduced operators in the Bloch-Floquet-Gelfand transform, in the periodic variables, of $H = H_0 + V$. If $V$ is sufficiently small and decreases fast enough in the infinite direction $x_1$, we prove that the guided waves are generically characterized by quasi-momenta belonging to some one-dimensional real analytic submanifold of the Brillouin zone. Moreover they decay faster than the inverse polynomial function in the infinite direction. This is a joint work with F. Bentosela, C. Bourrely and E. Soccorsi.

【 場所 】 自然学系D棟 509教室

トポロジーセミナー(2月6日)

日時:2014年2月6日(木)16:00~17:30
場所:筑波大学 自然系学系D棟 D 509

講演者:石田裕昭 氏 (京都大学 数理解析研究所)
講演題目:単体的球面とmoment-angle多様体

アブストラクト:頂点の数がmである単体的複体Kに対してmoment-angle複体と呼ばれるm次元トーラス作用付き位相空間が定義され、Kの実現がn-1次元球面である場合には対応するmoment-angle複体はm+n次元位相多様体になることが知られている。
さらにKがstar-shapedである場合には、対応するmoment-angle多様体はトーラス不変な可微分構造を持つことがPanov-Ustinovskyにより示されている。
本講演では、moment-angle多様体がトーラス不変な可微分構造をもつためのKに関する必要条件および十分条件について述べる。これは大阪市立大学の枡田幹也氏との共同研究に基づく。

代数特別セミナー(2月5日)

日時 2月5日(水) 15:30~17:30
場所 自 D814

講演者 Bo TAN 氏 華中科技大学教授
タイトル The graph of continuous function and packing dimension.

連絡先 秋山茂樹 (4395)

微分幾何学火曜セミナー(2月4日)

日時:2月4日(火)、16:00~16:45
場所:B627

講演者:松島弘直(筑波大)
タイトル:調和写像の存在定理とその応用

説明:リーマン多様体間の滑らかな写像に対してそのエネルギーが定義され、これにより滑らかな写像全体からなる空間上の汎関数が得られる。調和写像はエネルギー汎関数の臨界点として定義され、測地線、調和関数、極小部分多様体などを例に持つ重要な研究対象であり、与えられた写像を調和写像へ自由ホモトープに変形できるかどうかは、幾何学的変分問題の基本的な問題といえる。
 本講演では、この問題に対する答えのひとつであるEells-Sampsonの定理の証明の概要と、定理の応用としてリーマン多様体の構造に関して知られている結果について述べる。