新着情報

新着情報

集中講義(2月17日~20日)

科目名:代数学特論Ⅱ (1単位)
科目番号:01BB013
講師:鈴木武史 氏 (岡山大学大学院自然科学研究科・准教授)

日程:2月17日(月) 10:00~
     2月18日(火) 未定 当日決定
     2月19日(水) 未定 当日決定
     2月20日(木) 未定 当日決定
場所:自然系学系棟D814

講義題目:対称群とHecke代数の表現論
講義概要:対称群および付随する岩堀-Hecke代数、そしてそれらの拡張である(退化)アフィンHecke代数の表現論について講義する。特にA型のLie代数の表現論との関係に焦点を当てる。時間があれば圏化の話題についても触れる。

TWINS履修申請:1月27日(月)~2月14日(金)
世話人:佐垣大輔

Tsukuba Workshop for Young Mathematicians (Feb 13-14)

Tsukuba Workshop for Young Mathematicians started in 2008 and has been held annually in Tsukuba. This workshop is organized with the aim of promoting communication and networking among young mathematicians, especially the graduate students studying at Asian universities.

Date: February 13 (Thu) - 14 (Fri), 2014
Place: The Tsukuba Center for Institutes
Address: 2-20-5 Takezono, Tsukuba, Ibaraki 305-0032, JAPAN

http://www.math.tsukuba.ac.jp/workshopyoung2014/

代数セミナー(2月12日)

Satellite Seminar to Tsukuba Workshop for Young Mathematicians
講演者:Prof.Wang Qing(Xiamen University)

日時:2月12日(水) 16:00~17:00
場所:自然系学系棟 D814 セミナー室

タイトル:Module categories for toroidal Lie algebra

Abstract  In this talk,I will present some recent work on toroidal Lie algebra. We use basic formal variable techniques to study certain categories of modules for the toroidal Lie algebra τ. More specifically,we define and study two categories ετ and cτ of τ-modules using generating functions,where ετ is proved to contain the evaluation modules while cτ contains certain restricted τ-modules,the evaluation modules,and their tensor product modules. Furthermore,we classify the irreducible integrable modules in categories ετ and cτ. This is a joint work with Hongyan Guo and Shaobin Tan. 

ご来聴をお待ちしています。
森田純(4371)

解析セミナー(2月12日)

日  時: 2月12日(水)15時30分~17時00分

講 演 者: Yves Dermenjian 氏 (Aix-Marseille University)

題  目: The guided states of 3D biperiodic Schroedinger operators

要  旨: Let us consider the Laplacian $H_0= - \Delta$ perturbed by a non-positive potential $V$, which is periodic in two directions, and decays in the remaining one, $x_1$. We are interested in the characterization and decay properties of ground states, defined as the eigenfunctions of the reduced operators in the Bloch-Floquet-Gelfand transform, in the periodic variables, of $H = H_0 + V$. If $V$ is sufficiently small and decreases fast enough in the infinite direction $x_1$, we prove that the guided waves are generically characterized by quasi-momenta belonging to some one-dimensional real analytic submanifold of the Brillouin zone. Moreover they decay faster than the inverse polynomial function in the infinite direction. This is a joint work with F. Bentosela, C. Bourrely and E. Soccorsi.

【 場所 】 自然学系D棟 509教室

トポロジーセミナー(2月6日)

日時:2014年2月6日(木)16:00~17:30
場所:筑波大学 自然系学系D棟 D 509

講演者:石田裕昭 氏 (京都大学 数理解析研究所)
講演題目:単体的球面とmoment-angle多様体

アブストラクト:頂点の数がmである単体的複体Kに対してmoment-angle複体と呼ばれるm次元トーラス作用付き位相空間が定義され、Kの実現がn-1次元球面である場合には対応するmoment-angle複体はm+n次元位相多様体になることが知られている。
さらにKがstar-shapedである場合には、対応するmoment-angle多様体はトーラス不変な可微分構造を持つことがPanov-Ustinovskyにより示されている。
本講演では、moment-angle多様体がトーラス不変な可微分構造をもつためのKに関する必要条件および十分条件について述べる。これは大阪市立大学の枡田幹也氏との共同研究に基づく。