新着情報
新着情報
数学特別セミナー(7月17日)
日時: 2014年7月17日(木) 15:00-16:00
場所: 自然系学系棟D814
講演者: George Elliott (University of Toronto)
タイトル: A very brief survey of C^*-algebra classification theory
日時: 2014年7月17日(木) 16:15-17:15
場所: 自然系学系棟D814
講演者: Noriko Yui (Queen's University)
タイトル: Modularity/Automorphy of Calabi-Yau manifolds of dimension \leq 3
場所: 自然系学系棟D814
講演者: George Elliott (University of Toronto)
タイトル: A very brief survey of C^*-algebra classification theory
日時: 2014年7月17日(木) 16:15-17:15
場所: 自然系学系棟D814
講演者: Noriko Yui (Queen's University)
タイトル: Modularity/Automorphy of Calabi-Yau manifolds of dimension \leq 3
数学特別セミナー: 天野通大 氏 (7月9日)
日時: 2014年7月9日(水) 15:45-17:15
場所: 自然学系棟 D509 セミナー室
講演者: 天野 通大 氏 (筑波大付属大塚)
タイトル: 加法群スキームから twisted torus への変形群スキーム
概要: 多くの研究により乗法群の直積のデサントが考察されている. 我々は, 円分拡大に伴うガロア群の作用による乗法群スキームのデサントの手法を, 加法群から乗法群への変形群スキームへ適用する. その結果, 加法群から twisted torus への変形群スキームが構成される. こうした群スキームは Waterhouse-Weisfeiler により既に与えられているが, 我々の構成法は2次デサントによる新しい手法である. この手法を一般化することにより, 様々な群スキームの構成が期待できる. その展望を含め, 扱うデサントの手法や登場する群スキームの説明も丁寧に行いたい.
場所: 自然学系棟 D509 セミナー室
講演者: 天野 通大 氏 (筑波大付属大塚)
タイトル: 加法群スキームから twisted torus への変形群スキーム
概要: 多くの研究により乗法群の直積のデサントが考察されている. 我々は, 円分拡大に伴うガロア群の作用による乗法群スキームのデサントの手法を, 加法群から乗法群への変形群スキームへ適用する. その結果, 加法群から twisted torus への変形群スキームが構成される. こうした群スキームは Waterhouse-Weisfeiler により既に与えられているが, 我々の構成法は2次デサントによる新しい手法である. この手法を一般化することにより, 様々な群スキームの構成が期待できる. その展望を含め, 扱うデサントの手法や登場する群スキームの説明も丁寧に行いたい.
世話人 増岡 彰
トポロジーセミナー (6月26日)
日時: 2014年6月26日(木)16:30〜17:30
場所: 筑波大学 自然系学系D棟 D814
講演者: Victoria Lebed 氏 (大阪市立大学 数学研究所)
講演題目: A bridge between knotted graphs and axiomatizations of groups
アブストラクト: This talk will be devoted to a new algebraic structure called qualgebra. From the topological viewpoint, our construction is motivated by a study of knotted 3-valent graphs via combinatorially defined coloring invariants. From the algebraic viewpoint, it gives a part of an alternative axiomatization of groups, describing the properties of the conjugation operation and its interactions with the group multiplication. Explicit examples of qualgebras and associated graph invariants will be given. We will finish with some results on topological and algebraic aspects of branched braids, which produce knotted 3-valent graphs via the closure operation.
場所: 筑波大学 自然系学系D棟 D814
講演者: Victoria Lebed 氏 (大阪市立大学 数学研究所)
講演題目: A bridge between knotted graphs and axiomatizations of groups
アブストラクト: This talk will be devoted to a new algebraic structure called qualgebra. From the topological viewpoint, our construction is motivated by a study of knotted 3-valent graphs via combinatorially defined coloring invariants. From the algebraic viewpoint, it gives a part of an alternative axiomatization of groups, describing the properties of the conjugation operation and its interactions with the group multiplication. Explicit examples of qualgebras and associated graph invariants will be given. We will finish with some results on topological and algebraic aspects of branched braids, which produce knotted 3-valent graphs via the closure operation.
筑波大学数学談話会 (6月19日)
日時:6月19日(木曜日), 15:30--17:45 (15:00より tea )
場所:自然系学系 D棟 509
プログラム: (15:00--15:30 tea time)
15:30--16:30, 千原浩之 氏 (筑波大学)
題目:ユークリッド空間上のバーグマン変換と量子化
概要:ユークリッド空間上のバーグマン変換とよばれる積分変換は、関数をその超局所化を記述する正則関数へ変換してくれるので、超局所解析や準古典解析における有力な手段になっている。一方、この種の理論は信号処理等の応用分野の研究とも密接な関連がある。本講演では、まずこれらの話題をまとめて概観する。さらに、講演者の仕事や最近取り組んでいる課題を紹介する。
16:30--16:45 休憩
16:45--17:45, 平山至大 氏 (筑波大学)
題目:可微分力学系のエルゴード理論
概要:多様体上の保測な可微分写像の反復合成が生成する力学系のエルゴード理論について概説する.特に,エルゴード性やエントロピーの生成的な正則性に関する話題を紹介したい.
場所:自然系学系 D棟 509
プログラム: (15:00--15:30 tea time)
15:30--16:30, 千原浩之 氏 (筑波大学)
題目:ユークリッド空間上のバーグマン変換と量子化
概要:ユークリッド空間上のバーグマン変換とよばれる積分変換は、関数をその超局所化を記述する正則関数へ変換してくれるので、超局所解析や準古典解析における有力な手段になっている。一方、この種の理論は信号処理等の応用分野の研究とも密接な関連がある。本講演では、まずこれらの話題をまとめて概観する。さらに、講演者の仕事や最近取り組んでいる課題を紹介する。
16:30--16:45 休憩
16:45--17:45, 平山至大 氏 (筑波大学)
題目:可微分力学系のエルゴード理論
概要:多様体上の保測な可微分写像の反復合成が生成する力学系のエルゴード理論について概説する.特に,エルゴード性やエントロピーの生成的な正則性に関する話題を紹介したい.
微分幾何学火曜セミナー(6月17日)
日時: 2014年6月17日(火) 15:15~16:45
場所: 自然系学系棟 B627
講演者: 田崎博之(筑波大)
タイトル: 複素旗多様体内の四元数旗多様体の交叉の構造
概要: 今回の発表内容は入江博さん、酒井高司さんとの共同研究の結果に基いています。2012年5月に火曜セミナーで「複素旗多様体内の実旗多様体の交叉の構造」という題名で講演をしました。今回の話はその続きです。前回の講演で定義した複素旗多様体内の対蹠集合の概念に基いて、複素ベクトル空間の複素部分空間の列からなる複素旗多様体内の四元数旗多様体同士の交叉が対蹠集合になることを証明します。前回同様これもコンパクト型Hermite対称空間内の実形同士の交叉が対蹠集合になるという田中真紀子さんとの共同研究の結果の一部の拡張になっています。
場所: 自然系学系棟 B627
講演者: 田崎博之(筑波大)
タイトル: 複素旗多様体内の四元数旗多様体の交叉の構造
概要: 今回の発表内容は入江博さん、酒井高司さんとの共同研究の結果に基いています。2012年5月に火曜セミナーで「複素旗多様体内の実旗多様体の交叉の構造」という題名で講演をしました。今回の話はその続きです。前回の講演で定義した複素旗多様体内の対蹠集合の概念に基いて、複素ベクトル空間の複素部分空間の列からなる複素旗多様体内の四元数旗多様体同士の交叉が対蹠集合になることを証明します。前回同様これもコンパクト型Hermite対称空間内の実形同士の交叉が対蹠集合になるという田中真紀子さんとの共同研究の結果の一部の拡張になっています。