新着情報

新着情報

トポロジーセミナー(2017/10/24 & 26)

日時:
【第1回目】2017年10月24日(火)10:10〜15:00
【第2回目】2017年10月26日(木)10:10〜15:00

場所:筑波大学 自然系学系D棟D814

講演者:鈴木咲衣 氏 (京都大学白眉センター/数理解析研究所)

講演題目:量子不変量入門,色付き理想単体分割を用いた普遍量子不変量の構成

アブストラクト:
【量子不変量入門】
結び目理論におけるジョーンズ多項式の発見は,低次元トポロジーにおける大きなパラダイムシフトを起こした.
絡み目と3次元多様体の量子不変量に関連した研究はさまざまな方向へ発展し,現在も活発な動きを見せている.
この講義ではジョーンズ多項式を詳しく説明し,それを広げる形で絡み目と3次元多様体の量子不変量の研究を概観する.

【色付き理想単体分割を用いた普遍量子不変量の構成】
絡み目図式の交点にR行列を対応させることが量子不変量の構成の鍵であった.
R行列のYang-Baxter方程式(6角関係式)が絡み目図式のReidemeisterIII移動に対応する.
有限次元ホップ代数のHeisenberg doubleは5角関係式を満たすSテンソルを持つ.
この講義では絡み目図式とR行列の代わりに絡み目補空間の色付き理想単体分割とSテンソルを用いて普遍量子普遍量を再構成する.
Sテンソルの5角関係式が色付き理想単体分割のPachner(2,3)移動に対応する.

トポロジーセミナー(2017/09/21)

日時:2017年9月21日(木)15:15〜16:15

場所:筑波大学 自然系学系D棟D814

講演者:石川勝巳 氏 (京都大学 数理解析研究所)

講演題目:A relation between biquandle coloring and quandle coloring

アブストラクト:As well as quandles, biquandles give many invariants for links, virtual links, and higher dimensional links.

In particular, some invariants from biquandles are known to be stronger than those from quandles for virtual links.
However, we have not found an essentially refined invariant for classical links.

In this talk, we first explain that, for any classical/surface link, we can recover (a biquandle isomorphic to) the fundamental biquandle from the fundamental quandle.
This result implies that many biquandle invariants are reduced to quandle ones.
In fact, a biquandle coloring number is equal to a quandle coloring number.
Furthermore, we give an explicit one-to-one correspondence between biquandle colorings and quandle colorings.
As a corollary, a biquandle cocycle invariant is described by a quandle shadow cocycle invariant.

This is a joint work with Kokoro Tanaka (Tokyo Gakugei University).

解析セミナー Michael Dreher氏

 筑波大学解析セミナーを下記のように行いますのでご案内申し上げます.
 皆様のご参加をお待ちしております.

 ------ 筑波大学解析セミナーのお知らせ  ------

 日  時: 9月20日(水) 15時30分 〜 17時
    場  所 : 筑波大学 自然系学系 D棟 D509教室
 講 演 者: Michael Dreher (University of Rostock)
 題  目: Incompressible limits for generalisations to symmetrisable systems

 -----------------------------------------------
 なお,筑波大学解析セミナーホームページ
 (http://www.math.tsukuba.ac.jp/~analysis/)に
 講演に関する情報を掲載しております.

連絡先:
 桑原 敏郎 (kuwabara-at-math.tsukuba.ac.jp)

トポロジーセミナー(2017/09/04)

日時:2017年9月4日(月)16:10〜17:10

場所:筑波大学 自然系学系D棟D509

講演者:Min Hoon Kim 氏 (Korea Institute for Advanced Study)

講演題目:Irreducible 3-manifolds that cannot be obtained by 0-surgery on a knot

アブストラクト:We give infinitely many examples of closed, orientable, irreducible 3-manifolds $M$ such that $b_1(M)=1$ and $\pi_1(M)$ has weight 1, but $M$ is not the result of Dehn surgery along a knot in the 3-sphere.
This answers a question of Aschenbrenner, Friedl and Wilton.
This is joint work with Matt Hedden and Kyungbae Park.

トポロジーセミナー(2017/09/04)

日時:2017年9月4日(月)15:00〜16:00

場所:筑波大学 自然系学系D棟D509

講演者:
山田翔平 氏

講演題目:Ideal classes and Cappell-Shaneson homotopy 4-spheres

アブストラクト:Cappell と Shaneson は、3次元トーラスの mapping torus を手術することにより4次元のホモトピー球面を無数に構成する方法を示した。
Gompf はこのホモトピー球面の微分同相型を固定したまま、mapping torus の貼り合わせ写像(およびそれに対応する行列)を取りかえる操作を新たに導入した。
本講演ではこの操作の応用を進めて、行列のトレースがある程度小さい場合にはその行列をもとに構成される Cappell-Shaneson ホモトピー球面が通常の4次元球面に微分同相であることを証明する。トレースを固定するごとに行列が共役類を除いて有限個だけ現れることは古くから知られており、また大半のトレースでは MAGMA を用いてそれら有限個の完全代表系を具体的に列挙することが可能である。この計算は代数的整数論によって基礎付けられているが、一方で例外的に MAGMA による計算の困難なトレースも無数に存在する。たとえばトレースが27の場合はその例外である。本講演では行列のトレースが27の場合についても、Cappell-Shaneson ホモトピー球面が通常の4次元球面に微分同相であることを証明する。

なお、この研究は Min Hoon Kim 氏との共同研究である。