新着情報
Category:大学院集中講義
集中講義: 幾何学特論II (11/19~21)
授業科目: 幾何学特論 II (集中)
科目番号: 01BB049
日時: 11月19日 (月) ~ 11月21日 (水)
場所: 自然系学系棟 D814
講師: 太田 慎一 氏 (京都大学大学院理学研究科数学専攻・准教授)
講義題目: 最適輸送理論とリッチ曲率
講義概要:
最適輸送理論とは, 「ある分布 (確率測度) を別の分布に最小のコストで輸送する (押し出す) 方法」を研究する分野であり, 偏微分方程式論や確率論などで近年非常に活発に研究されている. 例えば, 最適輸送コストを分布の間の距離と考えるとき, この距離構造についてのある種のエントロピーの勾配流は熱流と一致する. また, リーマン多様体では最適輸送の性質は多様体の曲がり方と密接に関係し, エントロピーの凸性とリッチ曲率を下から押さえることの間の同値性が知られている.
この講義では, まず前半でユークリッド空間内の最適輸送の基本的な性質を解説し, 熱流との関係についても述べる. 後半ではリーマン多様体内の最適輸送を扱い, 上述のリッチ曲率との関係と幾何的・解析的応用を述べる. 最後に最近の発展について簡単に概説する.
科目番号: 01BB049
日時: 11月19日 (月) ~ 11月21日 (水)
場所: 自然系学系棟 D814
講師: 太田 慎一 氏 (京都大学大学院理学研究科数学専攻・准教授)
講義題目: 最適輸送理論とリッチ曲率
講義概要:
最適輸送理論とは, 「ある分布 (確率測度) を別の分布に最小のコストで輸送する (押し出す) 方法」を研究する分野であり, 偏微分方程式論や確率論などで近年非常に活発に研究されている. 例えば, 最適輸送コストを分布の間の距離と考えるとき, この距離構造についてのある種のエントロピーの勾配流は熱流と一致する. また, リーマン多様体では最適輸送の性質は多様体の曲がり方と密接に関係し, エントロピーの凸性とリッチ曲率を下から押さえることの間の同値性が知られている.
この講義では, まず前半でユークリッド空間内の最適輸送の基本的な性質を解説し, 熱流との関係についても述べる. 後半ではリーマン多様体内の最適輸送を扱い, 上述のリッチ曲率との関係と幾何的・解析的応用を述べる. 最後に最近の発展について簡単に概説する.