新着情報

新着情報

トポロジーセミナー(2018/05/11)

日時:2018年5月11日(金)17:00〜18:00

場所:筑波大学自然系学系D棟D814

講演者:中川勝國 氏(広島大学理学研究科)

講演題目:記号力学系におけるエントロピースペクトルの剛性問題 (Rigidity of entropy spectra for one-sided topological Markov chains) 

アブストラクト:変測度のKolmogorov-Sinaiエントロピーは、両側シフトの記号力学系では測度論的同型の完全不変量である(Ornstein)が,片側シフトにおいてはそうではない.本講演では、不変測度のエントロピースペクトルと呼ばれる関数が完全不変量になり得るかという問題を調べ,得られた結果をいくつか紹介する.Kolmogorov-Sinaiエントロピーはエントロピースペクトルの特殊値として実現されるので、この問題を考えることは自然である.

数学域談話会(4月19日 三原朋樹氏、蓮井翔氏)

4月の談話会を以下のように企画しています。
ぜひご参加ください。

 日時:4月19日(木) 13時30分~16時30分
 場所:自然学系棟 D棟 509

 第一部(13時30分~15時)
 講演者:三原朋樹氏(筑波大学数理物質系数学域)
 題目:空間と関数の双対の観点から見る非可換ポントリャーギン双対の整数論との関わり

 第二部(15時~16時30分)
 講演者:蓮井翔氏(筑波大学数理物質系数学域)
 題目:擬トーリック多様体の分類および関連する諸結果について

詳細についてはhttps://nc.math.tsukuba.ac.jp/colloq/をご覧ください。

筑波大学微分幾何学火曜セミナー

筑波大学微分幾何学火曜セミナー
日時:4月17日 (火) 15:15 ~ 16:45
場所:D509
講演者:Francisco Martin(University of Granada)
題目:Translating graphs for the MCF in Euclidean space
Abstract: A translator is a surface in $\mathbb{R}^3$ that (up to a tangential diffeomorphism) moves  with velocity $v=(0,0,-1)$ by Mean Curvature Flow. Equivalently, the mean curvature at each  point is $H= (0,0,-1)^{\perp}.$ Besides vertical planes, one of the simplest examples of complete translators is the grim reaper cylinder. In this talk we will describe several existence and uniqueness results for complete translators which are graphs over planar domains. This is a joint work with D. Hoffman, T. Ilmanen and B. White.

解析セミナー Jean Vaillant氏

    筑波大学解析セミナーを下記のように行いますのでご案内申し上げます.
 皆様のご参加をお待ちしております.

 ------ 筑波大学解析セミナーのお知らせ  ------

 日  時: 3月9日(金) 17時 〜 18時
    場  所 : 筑波大学 自然系学系 D棟 D509教室
 講 演 者: Jean Vaillant 氏 (University of Paris VI)
 題  目: Necessary conditions of hyperbolicity and Gevrey's classes

 -----------------------------------------------
 
 なお,筑波大学解析セミナーホームページ
 (http://www.math.tsukuba.ac.jp/~analysis/)に
 講演に関する情報を掲載しております.

研究集会「リーマン幾何と幾何解析」(2月22日,23日)

研究集会「リーマン幾何と幾何解析」のプログラムにつきまして
下記の通りご案内申し上げます.
皆様のご参加をお待ちしております.


研究集会「リーマン幾何と幾何解析」
日程:2018年2月22日(木)〜23日(金)
場所:筑波大学 自然系学系棟D棟5階 D509室
HP:http://www.kurims.kyoto-u.ac.jp/~takumiy/RGGA18.html
プログラム:
2月22日(木)
10:00-11:00:本多正平氏(東北大学)
局所スペクトル収束とその応用
11:20-12:20:竹内秀氏(東北大学)
距離空間上のカレントと♭距離
13:40-14:40:中島啓貴氏(東北大学)
Lipschitz order with an additive error and normal law à la Lévy on the Hamming cubes
15:00-16:00:数川大輔氏(東北大学)
A new condition for convergence of energies and stability of Ricci curvature bounds
16:20-17:20:横田巧氏(京都大学)
Stability of RCD condition under concentration topology
2月23日(金)
9:40-10:40:田中亮吉氏(東北大学)
調和測度のハウスドルフ次元公式
11:00-12:00:伊敷喜斗氏(筑波大学)
Quasi-symmetric invariant properties of Cantor metric spaces
13:20-14:20:納谷信氏(名古屋大学)
ラプラシアンの第1固有値を最大化する閉曲面上の計量について
14:40-15:40:服部広大氏(慶應義塾大学)
リッチ平坦多様体の無限遠点における接錐について
16:00-17:00:山田澄生氏(学習院大学)
アインシュタイン方程式と調和写像

世話人:
山口孝男(京都大学)
横田巧(京都大学)
永野幸一(筑波大学)