新着情報

新着情報

筑波大学数学談話会(9月27日)

当数学域の青嶋 誠 教授と矢田和善 助教が,
   Abraham Wald Prize in Sequential Analysis  および
  日本統計学会研究業績賞
を受賞しました。それを記念して談話会を開きます。

日時:9月27日(木)15:30 ~ 16:30
※ 15:00 ~ 15:30 にお茶の時間があります。
場所:自然系学系D棟509号室

タイトル:たった30個の標本で,10000次元のデータを,どこまで精密に解析できるか?

講演概要:近年,高次元小標本のデータ科学が,理論と応用の両面から世界中で活発に研究されています.ゲノム科学・情報工学・金融工学に端を発する高次元小標本データは,新しいタイプのデータ科学を生み出そうとしています.
 従来の統計学は,大標本を前提とするために,高次元小標本のデータ解析に精度を保証する解を与えてくれません.そのことは,最近まで正確には知られていませんでした.高次元小標本のデータ科学には,従来の統計学の枠組みを超えた,新しい発想が必要になります.
 本講演では,10000次元を超える高次元データを,100にも満たない僅かな標本数で扱います.上手に扱わないと,高次元データからはノイズしか聞こえてきません.しかし,本来,高次元データは,豊富な情報を内包しているはず.高次元小標本におけるデータ空間の特性を理解して,適切に解析を行えば,高次元データは驚くほど豊かな情報を語ってくれるのです.
 当日は,高次元小標本のデータ科学に高精度かつ高速な解析を行うために,青嶋・矢田が一連の共同研究で構築した理論と方法論について,アイデアの幾つかをなるべく平易に説明します.

研究集会のご案内 (9/10 ~ 9/14)

当数学域の宮本雅彦教授の還暦を記念して、以下のように研究集会を開催いたします。

研究集会名:Conference on Groups, VOAs and Related Structures in Honor of Masahiko Miyamoto
日程:2012年9月10日(月)~14日(金)
会場:自然系学系D棟509室
公式サイトhttps://sites.google.com/a/lab.twcu.ac.jp/miyamoto60/
主催者
安部利之(愛媛大学)、荒川知幸(数理研)、原田昌晃(山形大学)
佐垣大輔(筑波大学)、島倉裕樹(東北大学)、山内博(東京女子大学)

解析セミナー (9月5日)

日時:9月5日(水) 15:30-17:00
場所:自然系学系棟 D509
講師: Giovanni Morando 氏(パドヴァ大学, RIMS)
タイトル: "Constructibility of tempered solutions of holonomic D-modules"

講演要旨は こちら をご覧ください.

代数特別セミナーのお知らせ (8月27日)


以下のように代数特別セミナーを開催いたします。
多くの皆様のご来聴お待ちしております。

日時: 8月27日(月) 16:15-17:30
場所: 自然系学系棟D814 セミナー室
講師: 山根宏之先生(大阪大学)
講演題: 一般化された量子群のハリス・チャンドラ型定理
講演概要:一般化された量子群の中心の構造をあきらかにするハリス・チャンドラ型定理を,
私が以前Heckenbergerと求めたシャポバロフ行列式の因数分解をもちいて
Kac-Kazhdanの手法で証明します. これはPunita Batraとの共同研究です.

世話人 増岡彰(4368)
               (代理投稿 川村一宏)

代数特別セミナーのお知らせ(7月19日)


以下のように代数特別セミナーを開催します。皆様のお越しをお待ちしております。
                                         木村健一郎先生代理
                                                川村一宏
日時: 7月19日(木) 15:00 - 17:15 
場所: 自然系学系 D棟 509号室
 講演1
 時間: 15:00~16:00
 講演者:  Noriko Yui (Queen's University)
 タイトル: Modularity (automorphy) of Calabi-Yau varieties over Q
概要: I will present the current status on the modularity
of Calabi-Yau varieties defined over the field of rational numbers.
Here modularity is in the sense of the Langlands Program. In the first part,
I will formulate the modularity conjectures for Calabi-Yau varieties of
dimension 1, 2 and 3, and discuss the recent modularity results.  If there
is time, I will report on the recent joint wotrk with Y. Goto and R. Livne on
automorphy of certain K3-fibered Calabi-Yau threefolds, and mirror symmetry.

講演2:
時間: 16:15~17:15
講演者: George Elliott (University of Toronto)
タイトル: A brief history of non-smooth classification theory
概要:It was first within the theory of C*-algebras thatit was noticed---by Mackey
(or at least suspected by him!)---that the classification up to isomorphism of
a well-behavedensemble of objects (nicely parametrized)---in this case,
the irreducible representations of a given C*-algebra---might beno longer well behaved,
the corresponding quotient space of the"standard" Borel space of given objects
possibly being decidedlynonstandard (much like the real numbers
modulo the subgroup ofrationals).Interestingly, perhaps, it was also first
within the theoryof C*-algebras that this problem was circumvented
in a non-trivialway---by passing from the given category of objects
to a new categoryin an invariant way (by means of a functor), in such a way that
the new category is also well-behaved (e.g., a standard Borelspace), so
it is not just the set of isomorphism classes of theoriginal objects
(which would be non-smooth), but is still asimpler category than the original one---
for the simple reasonthat all inner automorphisms (if not all automorphisms) become
trivial. The first example of this was discovered by Glimm andDixmier, and
enlarged on later by Bratteli and Elliott---it was,incidentally, also work of Glimm
that confirmed Mackey'sdiscovery. This functorial treatment of a non-smooth
classification setting (isomorphism within a certain classof C*-algebras) was
the first use of K-theory in operatoralgebras. (Not counting the Murray-von Neumann type
classification of von Neumann algebras!)
    
    問い合わせ先: 木村健一郎

トポロジーセミナー(新國亮 氏,7月4日)

日時:2012年7月4日(水)16:00-17:30
場所:筑波大学 自然系学系D棟 D509
講演者:新國亮 氏 (東京女子大学 現代教養学部数理科学科)
講演題目:Heawoodグラフの結び目内在グラフとしての性質について
アブストラクト:
7頂点完全グラフの2次元トーラスへの埋め込みの像の双対グラフとして得られるHeawoodグラフは,
グラフのマイナー順序に関して極小な結び目内在グラフでもあることが知られている.
本講演では,Heawoodグラフの結び目内在グラフとしての性質として最近わかった幾つかの事実について解説する.
特に空間Heawoodグラフは非自明Hamilton結び目(=Hamiltonサイクルの像として得られる非自明結び目)を含むとは限らないことを述べる.

当日,懇親会を予定しております.

数学専攻 代数分野 研究計画発表会 (6月29日)

下記の要領にて,数学専攻(代数分野)前期2年次生の研究計画発表会を行います.
ご来聴をお待ちしております.

 日時:平成24年6月29日(金) 午前11:00~13:00
 場所:自然系学系D棟 D814セミナー室

プログラム
11:00~12:00
 柴田大樹       hyperalgebra を用いた Chevalley 群スキームの構成とその super 化
 東祐太郎       可解群の同型類の個数について
12:00~13:00
 谷口佑基       p-adic regulator とその周辺
 星光和         The R-bialgebra associated with an iterative q-difference ring

世話人  増岡彰

数学専攻 情報分野 研究計画発表会(6月29日)

下記の要領で数学専攻(情報分野)の前期2年次生の研究計画発表会を行います.多くの方のご来聴を期待しております.

  • 日時: 平成24年6月29(金) 午前10:00–11:30
  • 場所: 自然系学系棟D棟 D509 セミナー室

プログラム

10:00–10:45

  • 田中義澄 「長期記憶過程の特徴量の推定について」
  • 橋本真太郎「Bayesリスクの下界を与える不等式について」
  • 玄 光輝 「順序統計量とそのモーメントのboundについて」
  • 平田彩奈 「一階述語論理について」

10:45–11:30

  • 大津 融 「有限体における高速演算の研究」
  • 山崎朋幸 「アステカダイヤモンドのタイリング」
  • 黒崎 信 「Elementary substructureのtopologyへの応用」
  • 佐藤 陽 「選択公理とバナッハ・タルスキーのパラドックス」

世話人: 坪井明人

筑波大学数学談話会のお知らせ (6/21)

次回の「筑波大学数学談話会」は,以下の通りです。

日時: 6月 21日 (木) 15:30 ~ 16:30 (※ 15:00 より,ティータイム)
場所:自然系学系 D棟 509号室
講演者:丹下 基生氏(筑波大学・助教)
タイトル:4次元多様体の記述法とその応用
概要:微分可能多様体はモース理論に基づき、ハンドル分解することができる。4次元の場合のハンドル分解とは3次元球面内の枠付き絡み目に対応する。その絵をハンドル図式という。この講演では、ハンドル図式を見ることで4次元多様体を体感することと、その図式を用いて得られる結果について話す。

解析セミナー(6/20)

以下の要領で解析セミナーを開催します.

  日 時: 6月20日(水) 15時30分~17時00分

 講演者: 山澤 浩司 氏 (芝浦工業大学)
 
 題 目:「ある線形偏微分方程式のCauchy問題対する形式解のBorel総和法」

 場 所: 自然学系棟D棟 509教室 

微分幾何セミナー: 田崎博之 氏 (6/19)

日時: 2012年6月19日(火) 15:15~16:45
場所: 自然系学系棟 B627
講演者: 田崎博之(筑波大)
タイトル: コンパクト型Hermite対称空間の二つの実形の交叉II

概要:
今回の発表内容は田中真紀子さんとの共同研究の結果にもとづいています。​2010年1月の火曜セミナーでコンパクト型​Hermite対称空間の二つの実形の交叉に関する田中さんとの共同研究について講演しました。そこでは二つの実形の交叉が対蹠集合になることを示し、それを利用して交叉の性質を詳しく調べました。特に既約コンパクト型​Hermite対称空間の二つの実形の交点数を完全に決定しました。今回の講演ではこれまでの結果を利用してさらに既約ではない場合のコンパクト型​Hermite対称空間の二つの実形の交点数を完全に決定します。これには等長変換群や正則等長変換群の単位連結成分による剰余群の構造に関する村上信吾先生、竹内勝先生の結果が鍵になりました。

解析セミナー(6/12)

 以下の要領で解析セミナーを開催します.

 日 時: 6月12日(火) 16時30分~17時30分

 講演者: Serge Richard 氏 (University of Lyon,筑波大学) 題 目: "New representation formulas for the wave operators in potential scattering on R^3" 場 所:  自然学系D棟 509教室

微分幾何セミナー: 長谷川敬三 氏 (6/12)

日時: 2012年6月12日(火) 15:15~16:45
場所: 自然系学系棟 B814
講演者: 長谷川敬三 氏 (新潟大学)
タイトル: Non-Kaehler homgeneous geometry -- pseudo-Kaehler and locally conformally Kaehler structures

概要:
Kaehler構造の自然な一般化として擬​Kaehlerおよび局所共形K​aehler構造がある。この講演において,おもに等質および局所等質多様体上の局所共形​Kaehler構造について,基本事項を踏まえて出来る限り分かりやすく,最近の研究動向まで話をしたい。

特別セミナーのお知らせ(6/7)


下記の通り特別セミナーを開催いたします。皆様のふるってのご来聴をお待ちしております。

日時:6月7日(木) 15:30-16:30
場所:自然系学系棟D814
講演者: 小木曽岳義氏 (城西大学理学部・教授)
講演題目: 局所関数等式をみたす多項式のペアについて
世話人:宮本雅彦

微分幾何セミナー: 伊藤健一氏(6/5)


日時: 2012年6月5日(火) 15:15~16:45
講演者: 伊藤健一 (筑波大学)
タイトル: Absence of embedded eigenvalues for the Schrödinger operator on manifold with ends

概要:
増大するエンドを持つ多様体上のSchrödinger作用素に対し,ある臨界値より大きな$L^2$-固有値が存在しないことを示す.この臨界値はエンドとポテンシャルの遠方での振る舞いから計算され,典型的な例では連続スペクトルの下限に一致する.エンドの形状に関する仮定をある凸関数の存在で抽象的に定式化することで,漸近的にEuclid型なエンドと漸近的に双曲型なエンドの両者を同時に扱うことができる.証明は固有関数に対する先験的超指数減衰評価と超指数減衰する固有関数の非存在の二段階に分けて行われ,ともにMourre型交換子評価が鍵となる.
本講演はE. Skibsted氏(Aarhus大学)との共同研究に基づく.

筑波大学微分幾何学火曜セミナー

微分幾何セミナー: 北別府悠氏(5/29)


日時: 2012年5月29日(火) 15:15~16:45
場所: 自然系学系棟B627
講演者: 北別府悠氏(東北大・理)
タイトル: 測度距離空間上の coarse Ricci 曲率

概要:
距離空間とその上のランダムウォークに対して定義されるcoarse Ricci 曲率と測度距離空間上で定義される曲率次元条件の関係はよく分かっていませんでした。今回 Bishop-Gromov不等式を通してこの二つの概念の関係を調べることができたのでそれについてお話しします。また例を通してランダムウォークの取り方の重要性についても述べたいと思います。

筑波大学微分幾何学火曜セミナー

筑波大学数学談話会のお知らせ (5/24)


今年度最初の談話会を以下のように開催します。皆様のお越しをお待ちしております。

5月24日(木) 15:00-17:30
自然系学系棟D509
講演者:有家 雄介 氏 (筑波大学)
      中島 誠   氏  (筑波大学)

講演題・講演概要

 有家 雄介氏  頂点作用素代数のフュージョン則について
            概要:頂点作用素代数の3つの加群の間のintertwining operatorの空間の次元を
                フュージョン則と呼ぶ. フュージョン則は射影直線上の3点に加群を対応させた
                共形ブロックの空間の次元と等しいことがY. Zhuにより示されている.
                本講演ではintertwining operatorにlog項を付け加えたものの空間と,
                射影直線上の3点に対数的と呼ばれる加群を対応させたときの共形ブロックの
                空間が同型となることを紹介する.時間が許せば, フュージョン則の計算の
                具体例についても紹介したい.


 中島 誠氏   有向パーコレーションの相転移に関する話題
           概要:パーコレーションと呼ばれる確率模型は様々な物理現象の中に見られ、
                 統計力学の中で重要な役割を果たしています。今回の講演では有向
                 パーコ レーションに現れる相転移のそれぞれの相での性質や相転移に
                 関する最近の発展をお話しします。必要な知識は中心極限定理です。

・ 時間には多少変更の可能性がありますこと、ご容赦ください。

微分幾何セミナー: 田崎博之氏 (5/15)

日時: 2012年5月15日(火) 15:15~16:45
場所: B627
講演者: 田崎博之(筑波大)
タイトル: 複素旗多様体内の実旗多様体の交叉の構造

詳細:
今回の発表内容は入江博さん、酒井高司さんとの共同研究の結果にもとづいています。一般化された複素旗多様体には一般化された対称空間の構造が入り、その点対称に関する対蹠集合は点対称の次数に依存せずに定まることを示します。さらに複素ベクトル空間の複素部分空間の列からなる複素旗多様体内の実旗多様体同士の交叉が対蹠集合になることを証明します。これはコンパクト型Hermite対称空間内の実形同士の交叉が対蹠集合になるという田中真紀子さんとの共同研究の結果の一部の拡張になっています。

筑波大学微分幾何学火曜セミナー

微分幾何セミナー: 相山 玲子 氏 (4/24)

日時: 4月24日(火), 15:15 ~ 16:45
場所: D814

講演者: 相山 玲子 (筑波大学)
タイトル: Surfaces in Euclidean 4-space and inflection points

概要:
4次元Euclid空間内の曲面上で,inflection point とは,第2基本形式がある法方向に対しては退化してしまっている点を意味します.Inflection point では法曲率が0であり,特に極小曲面の場合はそれが必要十分条件となります.Garcia-Mochida-Fuster-Ruas(1998年)は,genericには極小曲面にはinflection poitnがないことを示しています.法曲率が恒等的に0でない極小曲面においては,Inflection point の集合が面積をもたないことが,別の方法で示せます.また,その議論の応用として,法曲率が恒等的に0である極小曲面は,3次元Euclid空間内に含まれていなければならないことがわかります.これは,4次元Euclid空間内の完備極小曲面に対する Smoczyk-Wang-XinによるBernstain 型の結果(2006年)で与えられている条件に対して,その意味づけを与える結果といえます.

代数セミナー: 冨江 雅也 氏 (3/22)

日時: 3月22日(木) 16:00-17:00
場所: 自然系学系棟 D814 セミナー室

講演者: 冨江 雅也 氏 (盛岡大学)
タイトル: A relation between the shape of a permutation and the shape of the base poset derived from the Lehmer codes

概要:
置換から得られる Lehmer code には自然に半順序構造を入れることができます。Denoncourt はそのような半順序が分配束であることを示し、また base poset を記述しました。今回の講演では置換の形とそこから定まる base poset の形について得られた結果を紹介します。さらには root poset や lattice path とのつながりについてもお話したいと思います。