新着情報

新着情報

解析セミナー Jens Christensen氏

筑波大学解析セミナーを下記のように行いますのでご案内申し上げます.
 皆様のご参加をお待ちしております.

 ------ 筑波大学解析セミナーのお知らせ  ------

 日  時: 8月4日(金) 16時30分 〜 17時30分
    場  所 : 筑波大学 自然系学系 D棟 D509教室
 講 演 者: Jens Christensen (Colgate University, USA)
 題  目: Wavelet theory with an application to complex analysis

   講演要旨:
Wavelet theory has been an active area of research
for around 40 years. In this talk we first present a machinery,
called coorbit theory, which uses continuous wavelet transforms
in order to provide atomic decompositions for a large collection of Banach 
spaces. The theory was initiated by Feichtinger and Groechenig,
but we present a recent generalization which is more widely applicable.
Next we present an application to complex analysis.
Due to work by Rudin, Coifman and Rochberg as well as Luecking,
it has long been known that Bergman spaces have atomic decompositions,
where the atoms are samples of the Bergman kernel.
We use coorbit theory to provide a much larger class of atoms
for Bergman spaces on the unit ball.
This class of atoms includes translates of polynomials
under the discrete series representation of SU(n,1).

 -----------------------------------------------

通常の解析セミナーと曜日・時間が異なりますのでご注意ください。

微分幾何学火曜セミナー(7月25日)

日時:7月25日(火)15時15分から(16時45分頃まで)

場所:筑波大学自然系学系棟D棟 5階 D509

講演者:櫻井陽平氏(筑波大学)

講演題目:1-重み付きRicci曲率の下からの有界性とエントロピーの凸性について

講演要旨:
 重み付きRicci曲率はRicci曲率のある種の一般化であり,重み付きRiemann多様体の振る舞いを制御する.重み付きRicci曲率はあるパラメーターを備えているが,従来はそのパラメーターが多様体の次元以上の場合が主な研究対象であった.しかし最近では,多様体の次元未満の場合に関する研究も徐々に行われつつある.
 本講演では重み付きRicci曲率のパラメーターが多様体の次元未満の場合,特に1の場合を取り扱う.このとき,重み付きRicci曲率がある関数で下から押さえられることと,Wasserstein空間上のエントロピーがLott-Villani,Sturm型の凸性を満たすことが同値であることを説明する.さらにその同値性から導かれるBrunn-Minkowski型不等式や関数不等式を紹介する.

解析・幾何セミナー (Salvatori Niccolo 氏)

下記の日程で解析・幾何セミナーを開催いたしますので、興味がございます方は是非ご参加下さい。
(今回は微分幾何セミナー世話人の守屋先生にご協力いただき、解析セミナー・微分幾何セミナーの合同で開催いたします。)

 日  時: 7月18日(火) 16時40分 〜 17時40分
    場  所 : 筑波大学 自然系学系 D棟 D509教室
 講 演 者: Salvatori Niccolo (King's College London)

 題  目: The Residue Analytic Torsion and Logarithmic Topological 
                    Quantum Field Theory
   講演要旨:
Closed odd-dimensional manifolds with trivial cohomology can be distinguished by their analytic torsion (a secondary topological invariant introduced by Ray and Singer in 1971 that coincides with the Reidemeister torsion). In this talk, we will show that analytic torsion can be equivalently obtained by the (quasi) trace of a log-polyhomogenous operator and, by the use of Wodzicki's residue, we will define and study an exotic torsions: the residue analytic torsion, which turns out to be a smooth invariant in some occasions, with properties that are complementary to those of the analytic torsion. Then, we will define the new concept of LogTQFT and use the residue torsion to provide an example. If time allows, we will present a generalization of the previous results to families of closed manifolds and to manifolds with boundary.

通常の解析セミナーと曜日・時間が異なりますのでご注意ください。

世話人:
桑原 敏郎 (kuwabara-at-math.tsukuba.ac.jp)
守屋 克洋 (
moriya-at-math.tsukuba.ac.jp)

トポロジーセミナー(2017/06/28)

日時:2017年6月28日(水)16:45〜18:15

場所:筑波大学自然系学系D棟D814

講演者:井ノ口順一氏 (筑波大学 数理物質系)

講演題目:3次元接触多様体上の磁場軌道 (Magnetic trajectories on contact 3-manifolds)

アブストラクト:測地流の一般化としてリーマン多様体上の磁場軌道が研究されている.3次元多様体の接触構造から自然に定まる磁場軌道の周期性に関する成果を報告する.(M.I.Munteanu氏との共同研究)

数学域談話会(7月20日)


 7月の談話会を以下のように企画しています.
 興味のある方はぜひご参加ください.

 日時 :7月20日(木)15時半~17時
      (15時からティーパーティー)
 場所 : 自然学系棟 D棟 509
 
 講演者: 桑山 秀一氏(筑波大学 生命環境系)

 題目:細胞集団運動におけるソリトン現象の発見

 

数学域談話会(6月1日)


 今年度はじめの 数学域談話会を 以下のように企画しています.
 ぜひご参加ください.

 日時: 6月1日 15時半~17時(15時よりティーパーティー)
 場所: 自然学系棟 D棟 509
 講演者: 筧 知之氏 (筑波大学数理物質系数学域)
 題目: 平均値作用素について

幾何学特論II 開講のお知らせ

日時: 712日(水)10時~ 714日(金)

場所: 自然系学系棟D814

講師:
中西 敏浩 教授(島根大学大学院総合理工学研究科・数理科学領域)

講義題目:双曲幾何からのタイヒミュラー空間論入門

講義概要:
この講義は双曲幾何学の手法によるタイヒミュラー空間論の概説である。前半では,双曲幾何が展開する双曲空間の定義とそのポアンカレ・モデルやクライン・モデルの紹介し,続いて等長変換(メビウス変換)の性質と等長変換群の離散部分群を扱う。後半は,双曲三角法の基本事項や双曲多角形の合同類について説明した後,双曲曲面の変形空間であるタイヒミュラー空間を導入する。タイヒミュラー空間論が及ぶ範囲は広いが,とくにフェンチェル・ニールセン座標などの大域座標系やマクシェーン恒等式などを中心的話題として取り上げる。

TWINS履修登録期間:523日(火)~77日(金)


世話人: 相山

トポロジーセミナー(2017/04/27)

日時:2017年4月27日(木)14:00〜15:00

場所:筑波大学自然系学系D棟D814

講演者:
伊敷喜斗 氏 (筑波大学 数理物質系)

講演題目:Quasi-symmetric invariant properties of Cantor metric spaces

アブストラクト:For metric spaces, the doubling property, the uniform disconnectedness, and the uniform perfectness are known as quasi-symmetric invariant properties.
We say that a Cantor metric space is standard if it satisfies all the three properties; otherwise, it is exotic.
For instance, the middle-third Cantor set is standard.
In this talk, we discuss our constructions of exotic Cantor metric spaces for all the possible cases of satisfying each of the three properties or not.
Our constructions enable us to classify Cantor metric spaces into eight types with concrete examples.
The David-Semmes uniformization theorem tells us that standard Cantor metric spaces are quasi-symmetric equivalent.
In this talk, we conclude that there exist at least two exotic Cantor metric spaces of the same type that are not quasi-symmetric equivalent to each other.
Moreover, for each of all the non-uniformly disconnected types, there exist at least aleph one many quasi-symmetric equivalent classes of Cantor metric spaces of such a given type.
As a byproduct of our study, we state that there exists a Cantor metric space with prescribed Hausdorff dimension and Assoud dimension.

解析セミナー Jean Vaillant氏

筑波大学解析セミナーを下記のように行いますのでご案内いたします.
 皆様のご参加をお待ちしております.

 ------ 筑波大学解析セミナーのお知らせ  ------

 日  時: 3月15日(水) 16時 〜 17時

 講 演 者: Jean Vaillant 氏(Paris VI)

 題  目: Conditions of hyperbolicity for systems of linear partial differntial equations

 -----------------------------------------------

【 場所 】 筑波大学 自然系学系D棟 D509 教室

 なお,筑波大学解析セミナーホームページ
 (http://www.math.tsukuba.ac.jp/~analysis/)に
 講演に関する情報を掲載しております.

解析セミナー 廣惠一希 氏

下記の日程で解析セミナーを開催いたしますので、興味がございます方は是非ご参加下さい。

日時: 平成29年2月8日(水) 15時30分 — 17時
場所: 筑波大学 自然系学系 B棟 B718室 
(同じ週に学類向け集中講義を行いますので通常の部屋から変更します)
講演者: 廣惠一希 氏(城西大学)
題目: 線形常微分方程式のアクセサリーパラメーターを巡って
概要:
Fuchs型常微分方程式の大域解析学においてEuler型の積分表示解は古典的に
大きな役割を果たしてきた.
このEuler型の積分表示解を微分方程式が持つ
ための条件を決定づけるのがKatz-大久保の定理といえる.

すなわちRiemann球面上のFuchs型既約微分方程式がEuler変換によって一階
の方程式に変形できるため
の必要十分条件を微分方程式が「アクセサリーパ
ラメーターを持たない」という条件で決定したのが上記
の定理である.
この定理によってEuler型の積分表示解をもつFuchs型微分方程式のクラスが
決定されたこ
とになる.ではこの枠組みの外にある方程式,つまりアクセサ
リーパラメーターを持つ方程式やFuchs型
ではない方程式の大域解析学はどの
ように扱えばよいのか?

この問題に対する一つのアプローチがKac-Moodyルート系の組み合わせ論や
箙の表現論や平面代数曲線の
芽の特異点論等を通して近年急速に進展しつつある.
こうした研究の概要について講演者の結果も交えつつ最近の発展と今後の課題に
ついてお話ししたい.

世話人: 桑原 敏郎 (kuwabara-at-math.tsukuba.ac.jp)