新着情報
カテゴリ:微分幾何セミナー
微分幾何学火曜セミナー(1月14日)
日時:2014年1月14日(火),15:15~16:45
場所:B627
講演者:川上裕 氏 (山口大)
タイトル:曲面のガウス写像の函数論的性質について
説明:
3次元ユークリッド空間内の極小曲面のガウス写像には幾つかの函数論的性質が存在する。例えば、完備かつ非平坦な極小曲面のガウス写像の除外値数は高々4になるという「ピカールの小定理」に対応した結果が成り立つ。また、ガウス写像の7つの値の逆像が一致した場合、その写像が完全に1つに決まるという「ネバンリンナの一意化定理」に対応した結果も成り立つ。さらに、このような性質は、3次元双曲型空間内の平均曲率が1の双曲的ガウス写像や3次元アファイン空間内の非固有アファイン波面のラグランジアンガウス写像についても成り立つ。
そこで、本講演では、これらガウス写像の函数論的性質の意義およびその幾何学的背景について解説する。
場所:B627
講演者:川上裕 氏 (山口大)
タイトル:曲面のガウス写像の函数論的性質について
説明:
3次元ユークリッド空間内の極小曲面のガウス写像には幾つかの函数論的性質が存在する。例えば、完備かつ非平坦な極小曲面のガウス写像の除外値数は高々4になるという「ピカールの小定理」に対応した結果が成り立つ。また、ガウス写像の7つの値の逆像が一致した場合、その写像が完全に1つに決まるという「ネバンリンナの一意化定理」に対応した結果も成り立つ。さらに、このような性質は、3次元双曲型空間内の平均曲率が1の双曲的ガウス写像や3次元アファイン空間内の非固有アファイン波面のラグランジアンガウス写像についても成り立つ。
そこで、本講演では、これらガウス写像の函数論的性質の意義およびその幾何学的背景について解説する。