新着情報

新着情報

筑波大学数学談話会 (1月14日)

日時:1月14日(木曜日), 15:30--17:00 (15:00 より tea)

場所:自然系学系 D棟 509

講演者:辻井 正人 氏 (九州大学大学院数理学研究院)

題目:古典力学系の準古典解析

概要:測地流などの(平衡点を持たない双曲的な)古典力学系の性質を相空間上の関数への作用を通して解析をすることを考える.
計量を適当に調整すれば流れは単位速度で進むと見ることができるので,作用を「流れ方向のフーリエ成分」毎に分解することは(技術的には多少問題があるが)有効な考えである.さらに,周波数を無限大にする極限の解析が重要になり,そこに準古典解析の手法が応用されることは(名前に由来する不自然さを除けば)自然である.興味深いのは,解析の結果として古典力学系の中にその「量子化」が自然に埋め込まれているように見えることである.この「量子化」についてどのように考えるべきか私にはまだよく分からないが,興味深いと思われるので講演で話をしたい.

大学院集中講義(1月12日〜15日)

科目:幾何学特論I(01BB050)
講師:辻井正人(九州大学大学院数理学研究院)
日時:2016年1月12日(火)〜15日(金)
   初回は13:45開始 以降の日程は初回に通知する
場所:自然系学系D棟509
題目:双曲力学系のレゾナンス
概要:双曲力学系におけるレゾナンスについて講義する.力学系の相空間上の関数への自然な作用(やその一般化)は転送作用素と呼ばれる.双曲力学系は典型的なカオス的力学系であり,軌道の微小な差異が指数的に拡大される性質(初期値に関する鋭敏な依存性)を持つ.これをある種の拡散過程と捉えると,転送作用素は拡散方程式に対応し,その生成作用素が離散的スペクトル(レゾナンス)を持つと想像される.実際に適切な関数空間を取ることでそのような離散スペクトルを観察し,その基本的な性質について議論するのが本講義の目的である.
力学系についてはあまり予備知識を仮定せず,比較的単純な拡大的力学系から始めて,双曲的写像,双曲的流れと話を進めたい.

筑波大学数学談話会 (11月26日)

日時:11月26日(木曜日), 15:30--16:30 (15:00 より tea)

場所:自然系学系 D棟 509

講演者:桑原 敏郎 氏 (筑波大学)

題目:超局所微分作用素によって構成される非可換代数と表現論

概要:
非常に基本的な例を基に、超局所微分作用素を用いてシンプレクティック多様体を量子化(非可換変形)して得られる代数とその表現論について簡単に解説します。このような代数には(古典的な)半単純リー代数の普遍包絡環のほか、有理チェレドニック代数や有限W代数がありますが、多様体の基本的な性質が量子化された代数にまで持ち上がるなどの良い性質を持ちます。本講演ではそのような点に触れるとともに、最近増えている正標数の場合や、q-類似、頂点代数での類似についても簡単に紹介しようと思います。

科研費シンポジウム 大規模複雑データの理論と方法論:最前線の動向

「大規模複雑データの理論と方法論の総合的研究」研究代表者: 青嶋 誠
学術研究助成基金助成金 挑戦的萌芽研究 26540010
「ビッグデータの統計学: 理論の開拓と3Vへの挑戦」研究代表者: 青嶋 誠
によるシンポジウム

 「大規模複雑データの理論と方法論:最前線の動向」

世話人: 青嶋 誠 (筑波大学)、矢田 和善 (筑波大学)、日野 英逸 (筑波大学)
日 時: 2015年11月16日 (月) ~ 18日 (水)
場 所: 筑波大学自然系学系棟D棟 D509 (筑波キャンパス内)

内容・目的や懇親会などの最新情報は、下記サイトでご確認下さい。
http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/symposium.html

プログラム:
http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/program_2015.pdf

第4回 数理連携サロン (12月2日)

日時: 2015年 12月 2日 (水曜日), 15:15 -- 17:15
( 14:45 -- 15:15 と 17:15 -- 18:00 はティータイム)
場所: 自然系学系 D 棟 509

プログラム

15:15-15:45 「高次元データの統計数理」
青嶋 誠 (筑波大学数理物質系数学域・教授)

16:00-16:30 「電波天文学における統計」
中井 直正 (筑波大学数理物質系物理学域・教授)

16:45-17:15  「スパース学習による高次元データ解析」
川野 秀一 (電気通信大学大学院情報システム学研究科・准教授)

第3回 数理連携サロン (6月18日)

日時: 2015年 6月 18日 (木曜日), 15:15 -- 17:15 
(14:45 --15:15, 17:15--18:00 はティータイム)

プログラム

15:15-15:45 「共役系高分子による球体形成と共鳴発光現象」
山本 洋平(筑波大学数理物質系物質工学域)

16:00-16:30 「粉末結晶構造解析に現れる数学の問題について」
富安 亮子(高エネルギー加速器研究機構さきがけ研究員)

16:45-17:15 「分散型写像流の幾何解析」
千原 浩之(筑波大学数理物質系数学域)

筑波大学数学談話会 (5月21日)

日時: 5月21日 (木曜日)、 15:30--16:30 (15:00より tea)

場所: 自然系学系 D棟 509

講演者: 井ノ口 順一 氏 (筑波大学)

題目: 可積分幾何・差分幾何

概要: 無限可積分系とよばれている非線型偏微分方程式の多くが, 微分幾何に密接に関わることが知られている. 無限可積分系を構造方程式にもつ曲線や曲面の研究は「可積分幾何」とよばれるようになった. 本講演では, 現在,可積分幾何で関心をもたれている研究対象の中から, 「3次元幾何 (Thurson 幾何)における極小曲面の構成」について解説する(時間が許せば曲線の差分幾何にも触れたい).

研究集会「リーマン幾何と幾何解析」(3月6日〜7日)

研究集会「リーマン幾何と幾何解析」を
下記の通り開催いたしますのでご案内申し上げます.
皆様のご参加をお待ちしております.


研究集会「リーマン幾何と幾何解析」
開催日時: 2015年3月6日(金)13時--7日(土)16時頃
開催場所: 筑波大学自然系学系棟 D棟5階 D509
URL: http://www.kurims.kyoto-u.ac.jp/~takumiy/RGGA15.html

プログラム:
3月6日(金)
13:00--14:00: 芥川 和雄 氏(東京工業大学)
The Yamabe invariant and singular Einstein metrics
14:15--15:15: 大鳥羽 暢彦 氏(慶應義塾大学)
Metrics of constant scalar curvature on bundles each of whose typical fibers is a rotationally symmetric sphere
15:45--16:45: 櫻井 陽平 氏(筑波大学)
重み付きリッチ曲率が下に有界な境界付き多様体の剛性
17:00--18:00: 近藤 剛史 氏(名古屋大学・慶應義塾大学)
Wirtinger の不等式についての Gromov の問い

3月7日(土)
10:00--11:00: 三石 史人 氏(東北大学)
アレクサンドロフ空間の向きと基本類
11:15--12:15: 山本 光 氏(東京大学)

Ricci-mean curvature flows in gradient shrinking Ricci solitons
13:30--14:30: 國川 慶太 氏(東北大学)
一般余次元のtranslating solitonについて
14:45--15:45: 成 慶明 氏(福岡大学)
重み付き体積を保つ平均曲率フロー

世話人:
山口 孝男 (京都大学)
横田 巧 (京都大学)
永野 幸一 (筑波大学)

高次元統計解析セミナー

高次元統計解析で世界的に著名な J. S. Marron教授が来日します。

下記の通り、セミナーを開催します。
http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/symposium.html

お気軽にご参加ください。
----------------------------------------------------------------------
日 時:2015年2月20日(金)13:30-15:00
場 所:筑波大学自然系学系棟D棟 D814 (筑波キャンパス内)
講演者:J. S. Marron (University of North Carolina at Chapel Hill,
                      National University of Singapore)
題 目:High Dimension Low Sample Size Asymptotics
要 旨:
The asymptotics of growing sample size are the foundation of classical
mathematical statistics.  But modern big data challenges suggest
consideration of growing dimension as well.  A perhaps extreme case of
this has fixed sample size.  That context is seen to have some
counter-intuitive mathematical structure.  These non-standard ways of
thinking about data are seen to be the key to understanding important
aspects of real genomic data.

世話人: 青嶋 誠 (数学域)

臨時解析セミナー


 以下の要領で臨時 解析セミナーを行います.
 興味のある方は是非ご参加ください.
 
 -----------------------------------------------------------
  日  時: 2 月 23 日(月) 15時30分~17時
   ※ いつもと曜日が違いますので,ご注意ください.

 場  所: 自然学系棟D棟 509教室 
 
 講 演 者: Konstantin Pankrashkin 氏(University Paris-Sud) 

 題  目:  ``On eigenvalues of a Laplacian with Robin boundary conditions"
 
 講演要旨:
 We are going to discuss the spectral problem
 -\Delta u= E u, du/dn =B u 
  in smooth domains, with an attention to the situation when the parameter B   
   becomes large. We show that the problem essentially lives at the boundary
   of the domain, and the contributions of various geometric characteristics
   are shown. A link with Faber-Krahn-type inequalities is discussed.