新着情報
カテゴリ:解析セミナー
解析セミナー(4月30日)
日 時: 4 月 30 日(水) 15時30分~17時
講 演 者: Alexandru DIMCA 氏 (University of Nice Sophia Antipolis)
題 目: D-modules and projective hypersurfaces with isolated singularities
講演要旨は こちら をご覧ください.
解析セミナー (3月5日)
日時: 2014年3月5日(水) 15:00~17:30
場所: 自然系学系棟 D509
15:00~15:50 Jean Vaillant 氏 (パリ第6大学)
Necessary and sufficient conditions of hyperbolicity for linear differential systems.
16:00~17:30 伊藤 健一 氏 (筑波大学)
Threshold properties of one-dimensional discrete Schrödinger operators.
(講演の概要はこちら をご覧ください.)
http://www.math.tsukuba.ac.jp/~analysis/
場所: 自然系学系棟 D509
15:00~15:50 Jean Vaillant 氏 (パリ第6大学)
Necessary and sufficient conditions of hyperbolicity for linear differential systems.
16:00~17:30 伊藤 健一 氏 (筑波大学)
Threshold properties of one-dimensional discrete Schrödinger operators.
(講演の概要はこちら をご覧ください.)
http://www.math.tsukuba.ac.jp/~analysis/
臨時解析セミナー(2月18日)
日 時: 2月18日(火)15時30分~17時00分
(曜日が通常と異なりますので,ご注意ください.)
講 演 者: Elmar Schrohe 氏 (Leibniz Universit\"at Hannover)
題 目: Solvability of a Degenerate Boundary Value Problem
要 旨: Following work of K.\ Taira we consider the boundary value problem
$$Au=f\text{ in } X,\qquad Lu=g \text{ on }\partial X,$$
where $X$ is a compact manifold with boundary,
$A$ is a strongly elliptic second order operator which in local coordinates is of the form
$$A=\sum_{jk}a^{jk}\partial_{x_j}\partial_{x_k}+\sum b^j\partial_{x_j} + c$$
with real coefficients $a^{jk}=a^{jk}, b^j,c$ in the Htlder class $C^\tau$, $\tau>2$.
We require that
$\sum a^{jk}\xi_j\xi_k\ge \alpha |\xi|^2$ for some $\alpha>0$ and $0\not\equiv c\le0$.
The boundary condition $L$ is assumed to be of the form
$$Lu = \mu_0\gamma_0u + \mu_1\gamma_1u,$$
where $\gamma_0$ is the evaluation map at the boundary
and $\gamma_1$ is the evaluation of the exterior normal derivative at the boundary.
The $C^\tau$-functions $\mu_0$ and $\mu_1$ on $\partial X$
are supposed to be nonnegative with $\mu_0+\mu_1$ strictly positive everywhere.
Using the calculus of pseudodifferential operators with symbols of limited regularity
we then show the solvability of the boundary value problem
in various classes of Sobolev and Zygmund spaces with regularity
depending on the smoothness $\tau$ of the coefficients.
We also study the resolvent in suitable sectors of the complex plane.
\hfill (joint work with M. Hassan Zadeh)
【 場所 】 自然学系D棟 509教室
(曜日が通常と異なりますので,ご注意ください.)
講 演 者: Elmar Schrohe 氏 (Leibniz Universit\"at Hannover)
題 目: Solvability of a Degenerate Boundary Value Problem
要 旨: Following work of K.\ Taira we consider the boundary value problem
$$Au=f\text{ in } X,\qquad Lu=g \text{ on }\partial X,$$
where $X$ is a compact manifold with boundary,
$A$ is a strongly elliptic second order operator which in local coordinates is of the form
$$A=\sum_{jk}a^{jk}\partial_{x_j}\partial_{x_k}+\sum b^j\partial_{x_j} + c$$
with real coefficients $a^{jk}=a^{jk}, b^j,c$ in the Htlder class $C^\tau$, $\tau>2$.
We require that
$\sum a^{jk}\xi_j\xi_k\ge \alpha |\xi|^2$ for some $\alpha>0$ and $0\not\equiv c\le0$.
The boundary condition $L$ is assumed to be of the form
$$Lu = \mu_0\gamma_0u + \mu_1\gamma_1u,$$
where $\gamma_0$ is the evaluation map at the boundary
and $\gamma_1$ is the evaluation of the exterior normal derivative at the boundary.
The $C^\tau$-functions $\mu_0$ and $\mu_1$ on $\partial X$
are supposed to be nonnegative with $\mu_0+\mu_1$ strictly positive everywhere.
Using the calculus of pseudodifferential operators with symbols of limited regularity
we then show the solvability of the boundary value problem
in various classes of Sobolev and Zygmund spaces with regularity
depending on the smoothness $\tau$ of the coefficients.
We also study the resolvent in suitable sectors of the complex plane.
\hfill (joint work with M. Hassan Zadeh)
【 場所 】 自然学系D棟 509教室
臨時解析セミナー(1月16日)
日 時: 1月16日(木)15時30分~17時00分
(曜日が通常と異なりますので,ご注意ください.)
講 演 者: Victor Isakov 氏 (Wichita State University)
題 目: On increasing stability in the Cauchy and inverse problems for the
Helmholtz type elliptic equations
要 旨: We derive conditional stability estimates for the Helmholtz type equations
which are becoming of Lipschitz type for large frequencies/wave numbers.
Proofs use splitting solutions into low and high frequencies parts where we use energy
(in particular) Carleman estimates. We discuss numerical confirmation and open problems.
We report on new stability estimates for recovery of the near field from the scattering
amplitude and for Schroedinger potential from the Dirichlet-to Neumann map. In these
estimates unstable (logarithmic part) goes to zero as the wave number grows. Proofs
are using new bounds for Hankel functions and complex and real geometrical optics solutions.
【 場所 】 自然学系D棟 509教室
(曜日が通常と異なりますので,ご注意ください.)
講 演 者: Victor Isakov 氏 (Wichita State University)
題 目: On increasing stability in the Cauchy and inverse problems for the
Helmholtz type elliptic equations
要 旨: We derive conditional stability estimates for the Helmholtz type equations
which are becoming of Lipschitz type for large frequencies/wave numbers.
Proofs use splitting solutions into low and high frequencies parts where we use energy
(in particular) Carleman estimates. We discuss numerical confirmation and open problems.
We report on new stability estimates for recovery of the near field from the scattering
amplitude and for Schroedinger potential from the Dirichlet-to Neumann map. In these
estimates unstable (logarithmic part) goes to zero as the wave number grows. Proofs
are using new bounds for Hankel functions and complex and real geometrical optics solutions.
【 場所 】 自然学系D棟 509教室
特異点理論についての講演会 (1月14日)
日時:2014年1月14日(火曜日)16:30-18:30
場所:筑波大学 自然系学系 D棟 D509 教室
題目: Singularities at infinity of polynomial mappings
場所:筑波大学 自然系学系 D棟 D509 教室
題目: Singularities at infinity of polynomial mappings
講師:Tat Thang Nguyen
(Institute of Mathematics, Vietnam Academy of Sciences)
概要:
Let F: C^n \to C^m be a polynomial mapping. It is well-known that F
defines a locally trivial fibration outside some subset of C^m which is
called the "bifurcation set". In order to study the topology of the map F
one problem should be solved is: to characterize the bifurcation set of
F. In this talk, I will recall known results for this problem and give
our solution for the problem in some particular cases.
このセミナーでは、多項式写像の分岐点と無限遠点における特異点に
ついてお話し頂きます。 大学院生ならびに教員の方々のご参加を
お待ちしています。