新着情報

カテゴリ:トポロジーセミナー

トポロジーセミナー(2017/09/21)

日時:2017年9月21日(木)15:15〜16:15

場所:筑波大学 自然系学系D棟D814

講演者:石川勝巳 氏 (京都大学 数理解析研究所)

講演題目:A relation between biquandle coloring and quandle coloring

アブストラクト:As well as quandles, biquandles give many invariants for links, virtual links, and higher dimensional links.

In particular, some invariants from biquandles are known to be stronger than those from quandles for virtual links.
However, we have not found an essentially refined invariant for classical links.

In this talk, we first explain that, for any classical/surface link, we can recover (a biquandle isomorphic to) the fundamental biquandle from the fundamental quandle.
This result implies that many biquandle invariants are reduced to quandle ones.
In fact, a biquandle coloring number is equal to a quandle coloring number.
Furthermore, we give an explicit one-to-one correspondence between biquandle colorings and quandle colorings.
As a corollary, a biquandle cocycle invariant is described by a quandle shadow cocycle invariant.

This is a joint work with Kokoro Tanaka (Tokyo Gakugei University).

トポロジーセミナー(2017/09/04)

日時:2017年9月4日(月)16:10〜17:10

場所:筑波大学 自然系学系D棟D509

講演者:Min Hoon Kim 氏 (Korea Institute for Advanced Study)

講演題目:Irreducible 3-manifolds that cannot be obtained by 0-surgery on a knot

アブストラクト:We give infinitely many examples of closed, orientable, irreducible 3-manifolds $M$ such that $b_1(M)=1$ and $\pi_1(M)$ has weight 1, but $M$ is not the result of Dehn surgery along a knot in the 3-sphere.
This answers a question of Aschenbrenner, Friedl and Wilton.
This is joint work with Matt Hedden and Kyungbae Park.

トポロジーセミナー(2017/09/04)

日時:2017年9月4日(月)15:00〜16:00

場所:筑波大学 自然系学系D棟D509

講演者:
山田翔平 氏

講演題目:Ideal classes and Cappell-Shaneson homotopy 4-spheres

アブストラクト:Cappell と Shaneson は、3次元トーラスの mapping torus を手術することにより4次元のホモトピー球面を無数に構成する方法を示した。
Gompf はこのホモトピー球面の微分同相型を固定したまま、mapping torus の貼り合わせ写像(およびそれに対応する行列)を取りかえる操作を新たに導入した。
本講演ではこの操作の応用を進めて、行列のトレースがある程度小さい場合にはその行列をもとに構成される Cappell-Shaneson ホモトピー球面が通常の4次元球面に微分同相であることを証明する。トレースを固定するごとに行列が共役類を除いて有限個だけ現れることは古くから知られており、また大半のトレースでは MAGMA を用いてそれら有限個の完全代表系を具体的に列挙することが可能である。この計算は代数的整数論によって基礎付けられているが、一方で例外的に MAGMA による計算の困難なトレースも無数に存在する。たとえばトレースが27の場合はその例外である。本講演では行列のトレースが27の場合についても、Cappell-Shaneson ホモトピー球面が通常の4次元球面に微分同相であることを証明する。

なお、この研究は Min Hoon Kim 氏との共同研究である。

トポロジーセミナー(2017/06/28)

日時:2017年6月28日(水)16:45〜18:15

場所:筑波大学自然系学系D棟D814

講演者:井ノ口順一氏 (筑波大学 数理物質系)

講演題目:3次元接触多様体上の磁場軌道 (Magnetic trajectories on contact 3-manifolds)

アブストラクト:測地流の一般化としてリーマン多様体上の磁場軌道が研究されている.3次元多様体の接触構造から自然に定まる磁場軌道の周期性に関する成果を報告する.(M.I.Munteanu氏との共同研究)

トポロジーセミナー(2017/04/27)

日時:2017年4月27日(木)14:00〜15:00

場所:筑波大学自然系学系D棟D814

講演者:
伊敷喜斗 氏 (筑波大学 数理物質系)

講演題目:Quasi-symmetric invariant properties of Cantor metric spaces

アブストラクト:For metric spaces, the doubling property, the uniform disconnectedness, and the uniform perfectness are known as quasi-symmetric invariant properties.
We say that a Cantor metric space is standard if it satisfies all the three properties; otherwise, it is exotic.
For instance, the middle-third Cantor set is standard.
In this talk, we discuss our constructions of exotic Cantor metric spaces for all the possible cases of satisfying each of the three properties or not.
Our constructions enable us to classify Cantor metric spaces into eight types with concrete examples.
The David-Semmes uniformization theorem tells us that standard Cantor metric spaces are quasi-symmetric equivalent.
In this talk, we conclude that there exist at least two exotic Cantor metric spaces of the same type that are not quasi-symmetric equivalent to each other.
Moreover, for each of all the non-uniformly disconnected types, there exist at least aleph one many quasi-symmetric equivalent classes of Cantor metric spaces of such a given type.
As a byproduct of our study, we state that there exists a Cantor metric space with prescribed Hausdorff dimension and Assoud dimension.