Category:トポロジーセミナー
トポロジーセミナー (6月26日)
場所: 筑波大学 自然系学系D棟 D814
講演者: Victoria Lebed 氏 (大阪市立大学 数学研究所)
講演題目: A bridge between knotted graphs and axiomatizations of groups
アブストラクト: This talk will be devoted to a new algebraic structure called qualgebra. From the topological viewpoint, our construction is motivated by a study of knotted 3-valent graphs via combinatorially defined coloring invariants. From the algebraic viewpoint, it gives a part of an alternative axiomatization of groups, describing the properties of the conjugation operation and its interactions with the group multiplication. Explicit examples of qualgebras and associated graph invariants will be given. We will finish with some results on topological and algebraic aspects of branched braids, which produce knotted 3-valent graphs via the closure operation.
トポロジーセミナー(2月6日)
場所:筑波大学 自然系学系D棟 D 509
講演者:石田裕昭 氏 (京都大学 数理解析研究所)
講演題目:単体的球面とmoment-angle多様体
アブストラクト:頂点の数がmである単体的複体Kに対してmoment-angle複体と呼ばれるm次元トーラス作用付き位相空間が定義され、Kの実現がn-1次元球面である場合には対応するmoment-angle複体はm+n次元位相多様体になることが知られている。
さらにKがstar-shapedである場合には、対応するmoment-angle多様体はトーラス不変な可微分構造を持つことがPanov-Ustinovskyにより示されている。
本講演では、moment-angle多様体がトーラス不変な可微分構造をもつためのKに関する必要条件および十分条件について述べる。これは大阪市立大学の枡田幹也氏との共同研究に基づく。
トポロジーセミナー(11月21日)
場所:自然系学系棟 D509
講演者:和田幸史朗 氏 (広島大学 理学研究科)
講演題目:2点等質カンドルと巡回型カンドルについて
アブストラクト:
2点等質カンドルは,田丸博士氏によって2点等質空間のアナロジーとして定義された.一方で,巡回型カンドルは有限カンドルのうち,ある特殊な構造を持つカンドルとして知られ,分類が試みられている.本講演では,これらのカンドルが持つ性質について解説し,位数が素数冪の場合における,巡回型カンドルと2点等質カンドルの分類を与える.
トポロジーセミナー (10月31日)
日時: 2013年10月31日(木)16:00-17:30
場所: 筑波大学 自然系学系D棟 D509
講演者: 金英子 氏 (大阪大学 理学研究科)
講演題目: Pseudo-Anosovs with small dilatations coming from the magic 3-manifold
アブストラクト:
Pseudo-Anosov mapping classes are equipped with some constants >1 called the dilatation. It is known that the logarithm of the dilatation is exactly equal to the topological entropy of a pseudo-Anosov representative of its mapping class. By work of Thurston, if a hyperbolic fibered 3-manifold M has the second Betti number more than 1, then it admits infinitely many fibrations on M. Moreover the monodromy of any fibration on M is pseudo-Anosov. As an example of such manifolds, we consider a single 3-manifold N with 3 cusps called the magic 3-manifold. We compute the dilatation of monodromy of each fibration on N. We also discuss the problem on the minimal dilatations and their asymptotic behavior. Intriguingly, pseudo-Anosovs with the smallest known dilatations are ``coming from" the magic 3-manifold. This is a joint work with Mitsuhiko Takasawa.
トポロジーセミナー (6月20日)
場所: 筑波大学 自然系学系D棟 D509
講演者: 松下尚弘 氏 (東京大学大学院 数理科学研究科)
講演題目: グラフの被覆写像と基本群の理論
アブストラクト:
本講演では、正の整数rに対し、グラフのr-被覆写像とr-基本群に関する定義を述べ、その性質について述べる。r-被覆写像はグラフの写像の一つのクラスであり、r-基本群は基点付きグラフに対して定義される群である。これらの間にはトポロジーにおける被覆写像と基本群との関係と類似の関係が見られる。またこれらはグラフの組合せ論的な性質を反映しており、特に2-基本群はグラフの彩色問題に関連が深い、Lovaszの近傍複体の基本群と密接に関係している。