新着情報
カテゴリ:微分幾何セミナー
微分幾何学火曜セミナー (4月15日)
日時: 2014年4月15日(火) 15:15~16:45
場所: 自然系学系棟 B627
講演者: 田崎博之 (筑波大学)
タイトル: 有向実Grassmann多様体の対蹠集合の系列と評価
概要: 有向実Grassmann多様体の極大対蹠集合は、有限集合内のある性質を持つ部分集合の族と一対一に対応すること、および階数 4 以下の場合の極大対蹠集合の分類を2013年1月の火曜セミナーで示しました。今回の講演では階数 4 以下の場合の極大対蹠集合の分類に現れた対蹠集合の系列を一般化し、これらがいつ極大になるか明らかにします。さらにこの系列を利用して、階数 5 の場合の対蹠集合の大きさの評価を与えます。
場所: 自然系学系棟 B627
講演者: 田崎博之 (筑波大学)
タイトル: 有向実Grassmann多様体の対蹠集合の系列と評価
概要: 有向実Grassmann多様体の極大対蹠集合は、有限集合内のある性質を持つ部分集合の族と一対一に対応すること、および階数 4 以下の場合の極大対蹠集合の分類を2013年1月の火曜セミナーで示しました。今回の講演では階数 4 以下の場合の極大対蹠集合の分類に現れた対蹠集合の系列を一般化し、これらがいつ極大になるか明らかにします。さらにこの系列を利用して、階数 5 の場合の対蹠集合の大きさの評価を与えます。
微分幾何学火曜セミナー(2月4日)
日時:2月4日(火)、16:00~16:45
場所:B627
講演者:松島弘直(筑波大)
タイトル:調和写像の存在定理とその応用
説明:リーマン多様体間の滑らかな写像に対してそのエネルギーが定義され、これにより滑らかな写像全体からなる空間上の汎関数が得られる。調和写像はエネルギー汎関数の臨界点として定義され、測地線、調和関数、極小部分多様体などを例に持つ重要な研究対象であり、与えられた写像を調和写像へ自由ホモトープに変形できるかどうかは、幾何学的変分問題の基本的な問題といえる。
本講演では、この問題に対する答えのひとつであるEells-Sampsonの定理の証明の概要と、定理の応用としてリーマン多様体の構造に関して知られている結果について述べる。
場所:B627
講演者:松島弘直(筑波大)
タイトル:調和写像の存在定理とその応用
説明:リーマン多様体間の滑らかな写像に対してそのエネルギーが定義され、これにより滑らかな写像全体からなる空間上の汎関数が得られる。調和写像はエネルギー汎関数の臨界点として定義され、測地線、調和関数、極小部分多様体などを例に持つ重要な研究対象であり、与えられた写像を調和写像へ自由ホモトープに変形できるかどうかは、幾何学的変分問題の基本的な問題といえる。
本講演では、この問題に対する答えのひとつであるEells-Sampsonの定理の証明の概要と、定理の応用としてリーマン多様体の構造に関して知られている結果について述べる。
微分幾何学火曜セミナー(2月4日)
日時:2月4日(火)、15:15~16:00
場所:B627
講演者:櫻井陽平(筑波大)
タイトル:リッチ曲率が下に有界な境界付きリーマン多様体の距離構造に関する剛性
説明:境界付きリーマン多様体に対し、リッチ曲率、ならびに境界の平均曲率のある有界性を仮定したとき、境界からの距離関数の上限や体積に関する比較定理が得られる。本講演では、それらの比較定理において、等号が成立する場合の、境界付きリーマン多様体の距離構造に関する剛性について述べる。特に、最近の新たな成果について、詳しく解説する予定である。
場所:B627
講演者:櫻井陽平(筑波大)
タイトル:リッチ曲率が下に有界な境界付きリーマン多様体の距離構造に関する剛性
説明:境界付きリーマン多様体に対し、リッチ曲率、ならびに境界の平均曲率のある有界性を仮定したとき、境界からの距離関数の上限や体積に関する比較定理が得られる。本講演では、それらの比較定理において、等号が成立する場合の、境界付きリーマン多様体の距離構造に関する剛性について述べる。特に、最近の新たな成果について、詳しく解説する予定である。
微分幾何学火曜セミナー(1月28日)
日時:1月28日(火)、15:15~16:45
場所:自然系学系棟B棟6階B627
講演者:守屋克洋(筑波大)
タイトル:Wintgen ideal surfaceの複素解析的性質
説明:Wintgen ideal surfaceに極の概念を導入し有理関数との類似の性質が成り立つことを説明する。この結果はIsrael J.Math.に掲載予定である。
場所:自然系学系棟B棟6階B627
講演者:守屋克洋(筑波大)
タイトル:Wintgen ideal surfaceの複素解析的性質
説明:Wintgen ideal surfaceに極の概念を導入し有理関数との類似の性質が成り立つことを説明する。この結果はIsrael J.Math.に掲載予定である。
微分幾何学火曜セミナー(1月14日)
日時:2014年1月14日(火),15:15~16:45
場所:B627
講演者:川上裕 氏 (山口大)
タイトル:曲面のガウス写像の函数論的性質について
説明:
3次元ユークリッド空間内の極小曲面のガウス写像には幾つかの函数論的性質が存在する。例えば、完備かつ非平坦な極小曲面のガウス写像の除外値数は高々4になるという「ピカールの小定理」に対応した結果が成り立つ。また、ガウス写像の7つの値の逆像が一致した場合、その写像が完全に1つに決まるという「ネバンリンナの一意化定理」に対応した結果も成り立つ。さらに、このような性質は、3次元双曲型空間内の平均曲率が1の双曲的ガウス写像や3次元アファイン空間内の非固有アファイン波面のラグランジアンガウス写像についても成り立つ。
そこで、本講演では、これらガウス写像の函数論的性質の意義およびその幾何学的背景について解説する。
場所:B627
講演者:川上裕 氏 (山口大)
タイトル:曲面のガウス写像の函数論的性質について
説明:
3次元ユークリッド空間内の極小曲面のガウス写像には幾つかの函数論的性質が存在する。例えば、完備かつ非平坦な極小曲面のガウス写像の除外値数は高々4になるという「ピカールの小定理」に対応した結果が成り立つ。また、ガウス写像の7つの値の逆像が一致した場合、その写像が完全に1つに決まるという「ネバンリンナの一意化定理」に対応した結果も成り立つ。さらに、このような性質は、3次元双曲型空間内の平均曲率が1の双曲的ガウス写像や3次元アファイン空間内の非固有アファイン波面のラグランジアンガウス写像についても成り立つ。
そこで、本講演では、これらガウス写像の函数論的性質の意義およびその幾何学的背景について解説する。