カテゴリ:談話会
6月1日(木) 談話会 伊藤 昇氏(茨城工業高等専門学校)
12月の談話会を以下のように企画しています。
たくさんの方のご参加をお待ちしています。
なお、この談話会は数学フロンティアの対象科目です。
詳細は以下の通りです。
日時:2023年6月1日(木)15:30~17:00
場所:オンライン
講演者:伊藤 昇氏(茨城工業高等専門学校)
講演タイトル: A quantization of the Arnold strangeness invariant
アブストラクト
登録フォーム(学外の方はこちらの参加フォームから登録してください)
https://forms.gle/pyA4bHJyGWYYabE96
連絡先:tange_(あっと)_math.tsukuba.ac.jp (丹下基生)
12月1日談話会 中山 優吾氏(京都大学情報学研究科)
12月の談話会を以下のように企画しています。
たくさんの方のご参加をお待ちしています。
なお、この談話会は数学フロンティアの対象科目です。
詳細は以下の通りです。
日時:2022年12月1日(水)15:15~16:45
場所:オンライン
連絡先:丹下 基生
講演者:中山 優吾氏(京都大学情報学研究科)
講演タイトル:高次元データに対するガウシアンカーネルとその応用
11月24日談話会 野澤 啓氏(立命館大学理工学部)
11月の談話会を以下のように企画しています。
たくさんの方のご参加をお待ちしています。
なお、この談話会は数学フロンティアの対象科目です。
詳細は以下の通りです。
日時:2022年11月24日(水)15:30~17:00
場所:D509
連絡先:丹下 基生
講演者:野澤 啓(立命館大学理工学部)
講演タイトル:タイル張りやグラフに現れるカオスについて
アブストラクト:ユークリッド空間R^dの非周期的なタイル張り(またはその点集合版であるR^d内のデローネ集合)に対して,
平行移動包と呼ばれる空間が考えられ,自然なR^d作用を持ちます.
このR^d作用がカオス的であるようなタイル張りやデローネ集合は,複雑な対称性を持つことが期待されます.
本講演では,こういったタイル張りが非常に多く存在することや,
R^dのタイル張りの構成法としてよく知られている切断射影法の双曲版による具体例の構成についてお話しします.
また,彩色グラフのカオス性についても触れます.
(Jesús A. Álvarez López氏 (U. Santiago de Compostela) , Ramon Barral Lijó氏 (立命館大), John Hunton氏 (Durham U.), John Parker氏(Durham U.)との共同研究)
10月5日談話会 川節 和哉(熊本大学)
10月の談話会を以下のように企画しています。
たくさんの方のご参加をお待ちしています。
なお、この談話会は数学フロンティアの対象科目です。
詳細は以下の通りです。
日時:2022年10月5日(水)15:15~16:45
場所:オンライン
連絡先:Scott Carnahan(carnahan@math.tsukuba.ac.jp)
講演者:川節 和哉(熊本大学)
講演タイトル:アフィン頂点代数の表現論
アブストラクト:アフィン頂点代数のうちレベルが自然数のものは、
非同型な既約表現が有限個で尽くされる。
それらは全て(アフィン Kac-Moody リー環の表現として)
可積分表現であり、特に最高ウェイト表現である。
一方、(自然数でないが許容的な) 分数レベルのアフィン頂点代数は、
既約表現を無限個持つが、ある種の有限性を持ち、様々な応用がある。
近年、分数レベルアフィン頂点代数について、可積分表現や最高ウェイト表現とは限らないウェイト表現が注目を集めており、分類理論や応用などが進んでいる。
本講演では、分数レベルのアフィン頂点代数の表現論について概説し、
sl_3に付随する例を中心に、最近の進展を紹介する。
8月3日談話会 内海 晋弥氏 (学習院大学)
8月の談話会を以下のように企画しています。
たくさんの方のご参加をお待ちしています。
なお、この談話会は数学フロンティアの対象科目です。
詳細は以下の通りです。
日時:2022年8月3日(水)15:15~16:30
場所:オンライン
連絡先:竹内耕太(kota@math.tsukuba.ac.jp)
講演者:内海 晋弥 (学習院大学 理学部 数学科)
講演タイトル:流体問題のための圧力安定化射影有限要素法について
講演アブストラクト:非圧縮粘性流の運動を記述するNavier-Stokes 問題の解を近似する数値解法を考える.流速と圧力が未知関数として現れるという特徴から,数学的な考察だけでなく,近似解を効率的に求解する計算効率の観点からも工夫を必要とする.本講演では,有限要素法と射影法を結合させた手法が主題となる.有限要素法は,応用上現れる領域に対して汎用的に計算可能な数値計算手法であり,数学的にも強固なバックグラウンドがある.ChorinとTemamから始まる射影法は流速と圧力を分離して解くことができる計算効率が良い手法である.本講演では,この射影有限要素法と,流速/圧力を近似する有限要素空間の通常許容される組み合わせについて概観した後,その組み合わせを広げる圧力安定化手法とその意義について解説する.さらに,物質微分の近似法に触れたのち,線形化問題に対する,解の正しさを表す誤差評価を示す.