新着情報
カテゴリ:大学院集中講義
大学院集中講義: 情報数学特論 I (1月28日~1月30日)
科目番号: 01BB156
科目名: 情報数学特論 I (1単位)
担当教員: 鳥越 規央 先生 (東北大学 理学部 准教授)
日時: 2013年1月28日(月) 13:45~
1月29日(火) (2日目以降の日程の詳細については
1月30日(水) 1日目にお知らせします)
題目: スポーツ統計学
概要: 日本でも普及しはじめたセイバーメトリクスの話題を中心にスポーツデータの解析でよく用いられる統計手法について講義を行う.
場所: 自然系学系棟 D509
世話人: 小池 健一 (数学)
TWINS履修登録期間: 1/7(月)~1/25(金)
科目名: 情報数学特論 I (1単位)
担当教員: 鳥越 規央 先生 (東北大学 理学部 准教授)
日時: 2013年1月28日(月) 13:45~
1月29日(火) (2日目以降の日程の詳細については
1月30日(水) 1日目にお知らせします)
題目: スポーツ統計学
概要: 日本でも普及しはじめたセイバーメトリクスの話題を中心にスポーツデータの解析でよく用いられる統計手法について講義を行う.
場所: 自然系学系棟 D509
世話人: 小池 健一 (数学)
TWINS履修登録期間: 1/7(月)~1/25(金)
成瀬弘氏 集中講義 (代数学特論I) 11月26日~29日
大学院集中講義(数学専攻)
代数学特論 I (01BB014) 1単位
成瀬 弘 教授 (岡山大学)
シューベルト・カルキュラスに登場する代数構造と組合せ論
概要: シューベルト・カルキュラスは,Lie群から作られる旗多様体のコホモロジー環の積構造を記号的計算で求めるために開発された.さらに組合せ論的な手法により種々の幾何学的な情報が有効に計算できることが知られている.この講義では,主として古典型のLie群に対するシューベルト・カルキュラスの基本的な手法について,背景となる代数構造との関連性を踏まえながら,シューア関数などの基本事項から始めて具体的な計算ができるよう丁寧に解説する.
11月26日(月) から 29日(木) まで
午前 10:30 ~ 12:30 午後 2:30 ~ 4:30
(ただし 29日(木) は午前中のみ)
於 D 814 セミナー室
午前 10:30 ~ 12:30 午後 2:30 ~ 4:30
(ただし 29日(木) は午前中のみ)
於 D 814 セミナー室
履修申請は TWINS から行ってください.
履修申請期間 11月1日(金) ~ 11月23日(木)
世話人 増岡 彰 (内線 4368)
集中講義: 幾何学特論II (11/19~21)
授業科目: 幾何学特論 II (集中)
科目番号: 01BB049
日時: 11月19日 (月) ~ 11月21日 (水)
場所: 自然系学系棟 D814
講師: 太田 慎一 氏 (京都大学大学院理学研究科数学専攻・准教授)
講義題目: 最適輸送理論とリッチ曲率
講義概要:
最適輸送理論とは, 「ある分布 (確率測度) を別の分布に最小のコストで輸送する (押し出す) 方法」を研究する分野であり, 偏微分方程式論や確率論などで近年非常に活発に研究されている. 例えば, 最適輸送コストを分布の間の距離と考えるとき, この距離構造についてのある種のエントロピーの勾配流は熱流と一致する. また, リーマン多様体では最適輸送の性質は多様体の曲がり方と密接に関係し, エントロピーの凸性とリッチ曲率を下から押さえることの間の同値性が知られている.
この講義では, まず前半でユークリッド空間内の最適輸送の基本的な性質を解説し, 熱流との関係についても述べる. 後半ではリーマン多様体内の最適輸送を扱い, 上述のリッチ曲率との関係と幾何的・解析的応用を述べる. 最後に最近の発展について簡単に概説する.
科目番号: 01BB049
日時: 11月19日 (月) ~ 11月21日 (水)
場所: 自然系学系棟 D814
講師: 太田 慎一 氏 (京都大学大学院理学研究科数学専攻・准教授)
講義題目: 最適輸送理論とリッチ曲率
講義概要:
最適輸送理論とは, 「ある分布 (確率測度) を別の分布に最小のコストで輸送する (押し出す) 方法」を研究する分野であり, 偏微分方程式論や確率論などで近年非常に活発に研究されている. 例えば, 最適輸送コストを分布の間の距離と考えるとき, この距離構造についてのある種のエントロピーの勾配流は熱流と一致する. また, リーマン多様体では最適輸送の性質は多様体の曲がり方と密接に関係し, エントロピーの凸性とリッチ曲率を下から押さえることの間の同値性が知られている.
この講義では, まず前半でユークリッド空間内の最適輸送の基本的な性質を解説し, 熱流との関係についても述べる. 後半ではリーマン多様体内の最適輸送を扱い, 上述のリッチ曲率との関係と幾何的・解析的応用を述べる. 最後に最近の発展について簡単に概説する.