ブログ

カテゴリ:代数セミナー

代数特別セミナー

日時: 10月15日 16:00-17:30
場所: D814
講演者: Andrew William Macpherson (IPMU)
題目:  A Yoneda philosophy of correspondences
Abstract: Cohomology is bivariant, which means that to a morphism f it associates not only a pullback map f^*, but also (under certain conditions) an Umkehr map in the opposite direction. These maps satisfy a "push-pull" or "base change" identity. Everyone knows that this implies that cohomology can be thought of as a functor out of a certain category CORR of "correspondences", whose morphisms are "rooves" and whose composition law is defined by taking a fibre product of kernels.
 In higher category theory, specifying objects by describing the morphism spaces and composition law explicitly --- as we just did with correspondences --- is rather inconvenient. Rather, it is better to define things via their universal properties. In this talk, I will give a universal interpretation for CORR in terms of "bivariant functors" into an (∞,2)-category, which takes out the pain from constructing functors out of CORR.

連絡先: 木村健一郎

数学特別セミナー(金久保 有輝 氏)

講演者:金久保 有輝 氏(上智大理工・D3)

日時:2016年11月4日 (Fri) 15:30 ~ 16:30

場所:自然系学系D棟814号室

タイトル:Cluster variables on double Bruhat cells of classical groups and crystal bases

アブストラクト:古典群 $G$ (=$SL_{r+1}(\mathbb{C})$, $SO_{2r+1}(\mathbb{C})$, $Sp_{2r}(\mathbb{C})$, $SO_{2r}(\mathbb{C})$) の部分群やセルを適当に選ぶと, それらの上の座標環は, クラスター代数という代数構造を持つことが知られている. 例えば冪単部分群 $N$ ($=$ $G$ の元で, 上三角行列からなるもののなす群) を考えると, 座標環 $\mathbb{C}[N]$ は, 双対標準基底と呼ばれる重要な基底を持ち, これは「適当な2つの基底を掛け算すると, 他の基底の二項和になる」という組み合わせ論的な性質を持っている. %標準基底は, リー環 Lie$(G)$ や, その量子群の表現論の中で生まれた基底である. 一方, $G$ は $G^{u,v}$ という2つのワイル群の元 $u$, $v$ でパラメトライズされるセルに分割される. 座標環 $\mathbb{C}[G^{u,v}]$ を考えると, こちらにも双対標準基底と似た性質を持つ生成元が構成される. そこで, Fomin, Zelevinsky の両氏は, リー環論や座標環理論の中で重要なこれらの生成元の性質を抽象化し, クラスター代数 (cluster algebra) を導入した. 即ち, 上で述べたような組み合わせ論的な生成元を, クラスター変数 (cluster variables) と呼び, そのような生成元を持つ代数のことをクラスター代数と定めたのである.
 最近, 上智大学の中島俊樹教授との共同研究で, 座標環 $\mathbb{C}[G^{e,v}]$ におけるクラスター変数と, 量子群の表現論の中に現れる結晶基底 (crystal base) との関係が明らかになった. 結晶基底は、量子群の表現の構造を大まかに明らかにしてくれる骨組みのようなもので, Young盤や paths, そして Laurent 単項式など, 様々な方法で書き表される. それらの豊富な表示方法によって, 表現の構造を組み合わせ論的に調べることができるようになるのである. 本講演では, 具体例を交えながらいくつかの用語を解説し, 主結果を説明する.

数学特別セミナー

講演者:佐藤 僚 氏(東大数理・D3)
日時:2016年4月21日 (Thu) 10:00 ~ 12:00
場所:自然系学系D棟814号室

タイトル:
Equivalences between logarithmic weight modules via $¥mathcal{N}=2$ coset constructions

アブストラクト:
$\mathcal{N}=2$超対称コセット構成とは,$\mathcal{N}=2$超Virasoro頂点作用素超代数を $A_{1}^{(1)}$型アフィン頂点作用素代数と荷電フェルミオン頂点作用素超代数のテンソル積に含まれる Heisenberg頂点作用素代数の可換子として実現する手法である.この構成によって,$A_{1}^{(1)}$型アフィンLie代数の既約ユニタリ(=可積分)最高ウェイト表現から$\mathcal{N}=2$超共形代数の全ての既約ユニタリ最高ウェイト加群が得られることはよく知られている.
 本講演では,Feigin-Semikhatov-Tipuninによって与えられた`$\mathcal{N}=2$ 超対称コセット構成の逆'を利用して,非ユニタリな場合にも適切な加群圏の間にアーベル圏としての圏同値が得られることを解説する.またその応用として,$\mathcal{N}=2$超Virasoro代数の表現の指標を$A_{1}^{(1)}$型アフィンLie代数の表現の指標で表す公式を与える.

数学特別セミナー: 天野通大 氏 (7月9日)

日時: 2014年7月9日(水) 15:45-17:15
場所: 自然学系棟 D509 セミナー室

講演者: 天野 通大 氏 (筑波大付属大塚)
タイトル: 加法群スキームから twisted torus への変形群スキーム

概要: 多くの研究により乗法群の直積のデサントが考察されている. 我々は, 円分拡大に伴うガロア群の作用による乗法群スキームのデサントの手法を, 加法群から乗法群への変形群スキームへ適用する. その結果, 加法群から twisted torus への変形群スキームが構成される. こうした群スキームは Waterhouse-Weisfeiler により既に与えられているが, 我々の構成法は2次デサントによる新しい手法である. この手法を一般化することにより, 様々な群スキームの構成が期待できる. その展望を含め, 扱うデサントの手法や登場する群スキームの説明も丁寧に行いたい.

世話人 増岡 彰

Tsukuba Mini-Workshop on Hopf Algebras (2月17日)

日時: 2月17日(月) 10:30-18:00
場所: 自然系学系棟 D509 セミナー室

10:30-12:00  津野 祐司 (千葉工大)
                   Galois objects and cleft objects for free Hopf algebras
13:30-15:00  増岡 彰 (筑波大)
                   Cleftness results on universal quantum groups
15:15-18:00  ディスカッション


世話人  増岡 彰