新着情報

Category:トポロジーセミナー

トポロジーセミナー

日時:2019年8月1日(木)16:00~17:30

場所:
筑波大学 自然系学系D棟D814 

講演者:
大城佳奈子 氏 (上智大学 理工学部)

講演題目:Knot-theoretic ternary-quasigroups, local biquandles, and shadow biquandles

アブストラクト:Knot-theoretic ternary-quasigroup は絡み目図式の領域彩色に関係する代数系であり,Niebrzydowski によって(コ)ホモロジー理論や絡み目のコサイクル不変量が定義された.
Knot-theoretic ternary-quasigroup 理論は local biquandle 理論で(つまり,biquandle 理論のように)解釈される.
また,ある条件を満たす shadow biquandle 理論も local biquandle 理論で解釈される.
この研究は,部分的に Sam Nelson 氏 (Claremont McKenna College),大山口菜都美氏(秀明大学)との共同研究を含んでいる.

トポロジーセミナー(2019/02/12)

日時:2019年2月12日(火)13:30〜15:00

場所:筑波大学自然系学系D棟D814

講演者:加藤久男 氏(筑波大学 数理物質系)

講演題目:Some topics on continuum theory and chaotic topological dynamics

アブストラクト計算機の発達により、力学系に出現する複雑な図形の可視化が可能になり、例えばフラクタル図形やストレンジ・アトラクターなどの多くの図形の具体例を目にするようになってきました。
一般に、複雑(カオス的)な位相力学系は複雑なトポロジーを導くことが知られています。空間が2次元以上の場合には、力学的な位相構造は複雑ですが(軌道の複雑性やエルゴート性など)、空間自体の複雑性までは影響を及ぼすことは多くありません。しかし空間が0、1次元の場合には、カオス的な力学系を許容するその空間自体が非常に複雑になることが予想されます。
0次元の場合はカントール集合ですので、1次元の場合が問題になります。
このセミナーでは、力学系理論に登場する数多くの“カオス”の中で特に“拡大性・位相エントロピー”などを扱います。
また連続体論では連続体の“分解不可能性”が特に重要な概念として知られています。
こうした力学系と連続体論の異なる分野の重要な概念が密接に関係し融合している幾つかの定理を紹介したいと思います。
また時間があれば、加藤の研究のこれまでの流れ(院生時代 ⇒ 現在)などお話したいと思います。

トポロジーセミナー(2018/11/28)

日時:2018年11月28日(水)16:00〜17:00

場所:筑波大学 自然系学系D棟D509

講演者:山口祥司 氏 (秋田大学 教育文化学部)

講演題目:ねじれアレキサンダー不変量の漸近挙動と結び目の外部空間の幾何構造について
(The asymptotic behavior of twisted Alexander invariant and the geometric structures of knot exteriors)

アブストラクト:基本群の$SL(2,\mathbb{C})$表現から3次元多様体の不変量の列を組織的に構成する方法を紹介し、構成した不変量の列の振る舞いと3次元トポロジーおよび結び目理論との関係を解説する。
本講演では特にねじれアレキサンダー不変量やライデマイスタートーションとよばれる不変量の漸近挙動に注目し、結び目の外部空間の幾何構造との関係について得られた結果を概説する。
(We review how to construct a sequence of invariants of a 3-manifold from an $SL(2,\mathbb{C})$-representation of the fundamental group and discuss a relation between the asymptotic behavior of resulting invariants and the 3-dimensional topology or knot theory.
This talk especially deals with the asymptotic behaviors of the twisted Alexander invariant or the Reidemeister torsion.
We observe recent developments related to the geometric structures of knot exteriors.)

トポロジーセミナー(2018/10/30)

日時:2018年10月30日(火)16:00〜17:00

場所:筑波大学自然系学系D棟D814

講演者:Jung Hoon Lee 氏 (Chonbuk National University)

講演題目:A necessary condition for constituent knots of reducible genus two handlebody-knots 

アブストラクト:A knot K is a constituent knot of a genus two handlebody-knot H if there is a non-separating disk D in H such that the core of cl(H-N(D)) is K.
We characterize constituent knots of a non-trivial reducible genus two handlebody-knot in terms of an incompressible torus (or two incompressible tori) in the exterior of the handlebody-knot.

トポロジーセミナー(2017/10/24 & 26)

日時:
【第1回目】2017年10月24日(火)10:10〜15:00
【第2回目】2017年10月26日(木)10:10〜15:00

場所:筑波大学 自然系学系D棟D814

講演者:鈴木咲衣 氏 (京都大学白眉センター/数理解析研究所)

講演題目:量子不変量入門,色付き理想単体分割を用いた普遍量子不変量の構成

アブストラクト:
【量子不変量入門】
結び目理論におけるジョーンズ多項式の発見は,低次元トポロジーにおける大きなパラダイムシフトを起こした.
絡み目と3次元多様体の量子不変量に関連した研究はさまざまな方向へ発展し,現在も活発な動きを見せている.
この講義ではジョーンズ多項式を詳しく説明し,それを広げる形で絡み目と3次元多様体の量子不変量の研究を概観する.

【色付き理想単体分割を用いた普遍量子不変量の構成】
絡み目図式の交点にR行列を対応させることが量子不変量の構成の鍵であった.
R行列のYang-Baxter方程式(6角関係式)が絡み目図式のReidemeisterIII移動に対応する.
有限次元ホップ代数のHeisenberg doubleは5角関係式を満たすSテンソルを持つ.
この講義では絡み目図式とR行列の代わりに絡み目補空間の色付き理想単体分割とSテンソルを用いて普遍量子普遍量を再構成する.
Sテンソルの5角関係式が色付き理想単体分割のPachner(2,3)移動に対応する.

トポロジーセミナー(2017/09/21)

日時:2017年9月21日(木)15:15〜16:15

場所:筑波大学 自然系学系D棟D814

講演者:石川勝巳 氏 (京都大学 数理解析研究所)

講演題目:A relation between biquandle coloring and quandle coloring

アブストラクト:As well as quandles, biquandles give many invariants for links, virtual links, and higher dimensional links.

In particular, some invariants from biquandles are known to be stronger than those from quandles for virtual links.
However, we have not found an essentially refined invariant for classical links.

In this talk, we first explain that, for any classical/surface link, we can recover (a biquandle isomorphic to) the fundamental biquandle from the fundamental quandle.
This result implies that many biquandle invariants are reduced to quandle ones.
In fact, a biquandle coloring number is equal to a quandle coloring number.
Furthermore, we give an explicit one-to-one correspondence between biquandle colorings and quandle colorings.
As a corollary, a biquandle cocycle invariant is described by a quandle shadow cocycle invariant.

This is a joint work with Kokoro Tanaka (Tokyo Gakugei University).

トポロジーセミナー(2017/09/04)

日時:2017年9月4日(月)16:10〜17:10

場所:筑波大学 自然系学系D棟D509

講演者:Min Hoon Kim 氏 (Korea Institute for Advanced Study)

講演題目:Irreducible 3-manifolds that cannot be obtained by 0-surgery on a knot

アブストラクト:We give infinitely many examples of closed, orientable, irreducible 3-manifolds $M$ such that $b_1(M)=1$ and $\pi_1(M)$ has weight 1, but $M$ is not the result of Dehn surgery along a knot in the 3-sphere.
This answers a question of Aschenbrenner, Friedl and Wilton.
This is joint work with Matt Hedden and Kyungbae Park.

トポロジーセミナー(2017/09/04)

日時:2017年9月4日(月)15:00〜16:00

場所:筑波大学 自然系学系D棟D509

講演者:
山田翔平 氏

講演題目:Ideal classes and Cappell-Shaneson homotopy 4-spheres

アブストラクト:Cappell と Shaneson は、3次元トーラスの mapping torus を手術することにより4次元のホモトピー球面を無数に構成する方法を示した。
Gompf はこのホモトピー球面の微分同相型を固定したまま、mapping torus の貼り合わせ写像(およびそれに対応する行列)を取りかえる操作を新たに導入した。
本講演ではこの操作の応用を進めて、行列のトレースがある程度小さい場合にはその行列をもとに構成される Cappell-Shaneson ホモトピー球面が通常の4次元球面に微分同相であることを証明する。トレースを固定するごとに行列が共役類を除いて有限個だけ現れることは古くから知られており、また大半のトレースでは MAGMA を用いてそれら有限個の完全代表系を具体的に列挙することが可能である。この計算は代数的整数論によって基礎付けられているが、一方で例外的に MAGMA による計算の困難なトレースも無数に存在する。たとえばトレースが27の場合はその例外である。本講演では行列のトレースが27の場合についても、Cappell-Shaneson ホモトピー球面が通常の4次元球面に微分同相であることを証明する。

なお、この研究は Min Hoon Kim 氏との共同研究である。

トポロジーセミナー(2017/06/28)

日時:2017年6月28日(水)16:45〜18:15

場所:筑波大学自然系学系D棟D814

講演者:井ノ口順一氏 (筑波大学 数理物質系)

講演題目:3次元接触多様体上の磁場軌道 (Magnetic trajectories on contact 3-manifolds)

アブストラクト:測地流の一般化としてリーマン多様体上の磁場軌道が研究されている.3次元多様体の接触構造から自然に定まる磁場軌道の周期性に関する成果を報告する.(M.I.Munteanu氏との共同研究)

トポロジーセミナー(2017/04/27)

日時:2017年4月27日(木)14:00〜15:00

場所:筑波大学自然系学系D棟D814

講演者:
伊敷喜斗 氏 (筑波大学 数理物質系)

講演題目:Quasi-symmetric invariant properties of Cantor metric spaces

アブストラクト:For metric spaces, the doubling property, the uniform disconnectedness, and the uniform perfectness are known as quasi-symmetric invariant properties.
We say that a Cantor metric space is standard if it satisfies all the three properties; otherwise, it is exotic.
For instance, the middle-third Cantor set is standard.
In this talk, we discuss our constructions of exotic Cantor metric spaces for all the possible cases of satisfying each of the three properties or not.
Our constructions enable us to classify Cantor metric spaces into eight types with concrete examples.
The David-Semmes uniformization theorem tells us that standard Cantor metric spaces are quasi-symmetric equivalent.
In this talk, we conclude that there exist at least two exotic Cantor metric spaces of the same type that are not quasi-symmetric equivalent to each other.
Moreover, for each of all the non-uniformly disconnected types, there exist at least aleph one many quasi-symmetric equivalent classes of Cantor metric spaces of such a given type.
As a byproduct of our study, we state that there exists a Cantor metric space with prescribed Hausdorff dimension and Assoud dimension.

トポロジーセミナー (6月26日)

日時: 2014年6月26日(木)16:30〜17:30
場所: 筑波大学 自然系学系D棟 D814

講演者: Victoria Lebed 氏 (大阪市立大学 数学研究所)
講演題目: A bridge between knotted graphs and axiomatizations of groups

アブストラクト: This talk will be devoted to a new algebraic structure called qualgebra. From the topological viewpoint, our construction is motivated by a study of knotted 3-valent graphs via combinatorially defined coloring invariants. From the algebraic viewpoint, it gives a part of an alternative axiomatization of groups, describing the properties of the conjugation operation and its interactions with the group multiplication. Explicit examples of qualgebras and associated graph invariants will be given. We will finish with some results on topological and algebraic aspects of branched braids, which produce knotted 3-valent graphs via the closure operation.

トポロジーセミナー(2月6日)

日時:2014年2月6日(木)16:00~17:30
場所:筑波大学 自然系学系D棟 D 509

講演者:石田裕昭 氏 (京都大学 数理解析研究所)
講演題目:単体的球面とmoment-angle多様体

アブストラクト:頂点の数がmである単体的複体Kに対してmoment-angle複体と呼ばれるm次元トーラス作用付き位相空間が定義され、Kの実現がn-1次元球面である場合には対応するmoment-angle複体はm+n次元位相多様体になることが知られている。
さらにKがstar-shapedである場合には、対応するmoment-angle多様体はトーラス不変な可微分構造を持つことがPanov-Ustinovskyにより示されている。
本講演では、moment-angle多様体がトーラス不変な可微分構造をもつためのKに関する必要条件および十分条件について述べる。これは大阪市立大学の枡田幹也氏との共同研究に基づく。

トポロジーセミナー(11月21日)

日時:2013年11月21日(木)16:00~17:30
場所:自然系学系棟 D509

講演者:和田幸史朗 氏 (広島大学 理学研究科) 
講演題目:2点等質カンドルと巡回型カンドルについて

アブストラクト:
2点等質カンドルは,田丸博士氏によって2点等質空間のアナロジーとして定義された.一方で,巡回型カンドルは有限カンドルのうち,ある特殊な構造を持つカンドルとして知られ,分類が試みられている.本講演では,これらのカンドルが持つ性質について解説し,位数が素数冪の場合における,巡回型カンドルと2点等質カンドルの分類を与える.

トポロジーセミナー (10月31日)

日時: 2013年10月31日(木)16:00-17:30
場所: 筑波大学 自然系学系D棟 D509

講演者: 金英子 氏 (大阪大学 理学研究科)
講演題目: Pseudo-Anosovs with small dilatations coming from the magic 3-manifold

アブストラクト:
Pseudo-Anosov mapping classes are equipped with some constants >1 called the dilatation. It is known that the logarithm of the dilatation is exactly equal to the topological entropy of a pseudo-Anosov representative of its mapping class. By work of Thurston, if a hyperbolic fibered 3-manifold M has the second Betti number more than 1, then it admits infinitely many fibrations on M. Moreover the monodromy of any fibration on M is pseudo-Anosov. As an example of such manifolds, we consider a single 3-manifold N with 3 cusps called the magic 3-manifold. We compute the dilatation of monodromy of each fibration on N. We also discuss the problem on the minimal dilatations and their asymptotic behavior. Intriguingly, pseudo-Anosovs with the smallest known dilatations are ``coming from" the magic 3-manifold. This is a joint work with Mitsuhiko Takasawa.

トポロジーセミナー (6月20日)

日時: 2013年6月20日(木)16:00-17:30
場所: 筑波大学 自然系学系D棟 D509

講演者: 松下尚弘 氏 (東京大学大学院 数理科学研究科)

講演題目: グラフの被覆写像と基本群の理論

アブストラクト:
本講演では、正の整数rに対し、グラフのr-被覆写像とr-基本群に関する定義を述べ、その性質について述べる。r-被覆写像はグラフの写像の一つのクラスであり、r-基本群は基点付きグラフに対して定義される群である。これらの間にはトポロジーにおける被覆写像と基本群との関係と類似の関係が見られる。またこれらはグラフの組合せ論的な性質を反映しており、特に2-基本群はグラフの彩色問題に関連が深い、Lovaszの近傍複体の基本群と密接に関係している。

トポロジーセミナー(北山貴裕 氏,10月4日)

日時:2012年10月4日(木)16:50-17:50
場所:筑波大学 自然系学系D棟 D509
講演者:北山貴裕 氏 (京都大学 数理解析研究所)
講演題目:On an analogue of Culler-Shalen theory for higher dimensional representations
アブストラクト:
Culler and Shalen established a way to construct incompressible surfaces
in a 3-manifold from ideal points of the SL_2-character variety.
We present an analogous theory to construct certain kinds of
branched surfaces from limit points of the SL_n-character variety.
Such a branched surface induces a nontrivial presentation of
the fundamental group as a 2-dimensional complex of groups.
This is a joint work with Takashi Hara (Osaka University).

当日,懇親会を予定しております.

トポロジーセミナー(新國亮 氏,7月4日)

日時:2012年7月4日(水)16:00-17:30
場所:筑波大学 自然系学系D棟 D509
講演者:新國亮 氏 (東京女子大学 現代教養学部数理科学科)
講演題目:Heawoodグラフの結び目内在グラフとしての性質について
アブストラクト:
7頂点完全グラフの2次元トーラスへの埋め込みの像の双対グラフとして得られるHeawoodグラフは,
グラフのマイナー順序に関して極小な結び目内在グラフでもあることが知られている.
本講演では,Heawoodグラフの結び目内在グラフとしての性質として最近わかった幾つかの事実について解説する.
特に空間Heawoodグラフは非自明Hamilton結び目(=Hamiltonサイクルの像として得られる非自明結び目)を含むとは限らないことを述べる.

当日,懇親会を予定しております.